首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal statics of constant pressure coronal loops is discussed, with particular emphasis on non-equilibrium and scaling relations. An analytical solution showing explicitly the occurrence of non-equilibrium in radiation dominated loops is presented. In addition, the general scaling law for hot loops is given. However, in view of the uncertainties in the coronal heating function and the observational determined loop parameters, it is suggested that scaling laws are currently of limited value.  相似文献   

2.
A hydrodynamic model of high resolution is used to examine the stability of coronal loops to finite amplitude perturbations. The loop is heated by means of a low-amplitude energy input and its subsequent dynamic relaxation is followed.Firstly, the initial atmosphere is generated by solving the time independent form of the hydrodynamic equations. It is shown that the loop structure depends critically on the balance between the radiative losses and the quiescent heating at the base of the transition zone, i.e. on the concavity of the temperature profile in this region. This result already anticipates the need for high spatial resolution across the model transition zone.The dynamic evolution of the loop is then investigated for two classes of lower boundary conditions. In one case the chromospheric temperature is fixed throughout the simulation; in the other the low chromosphere is represented by a rigid insulating barrier. In both cases the loop is found to be stable: The loop is also unique to the extent that it relaxes to a state which is physically indistinguishable from its initial configuration. It is pointed out however, that a loop whose chromosphere is only marginally stable can evolve dynamically away from the initial static configuration.Finally, the observational consequences of the analysis are discussed. The differential emission measure profile is found to change its form as the loop cools, firstly, through an evaporative phase in which the coronal density increases; secondly, through a quasi-steady relaxation in which the enhanced coronal density gradually drains away to the chromosphere. This behaviour represents a possible observational test of the model.  相似文献   

3.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

4.
Einaudi  G.  Van Hoven  G. 《Solar physics》1983,82(1-2):163-164
Solar Physics - Vertically propagating traveling waves have been observed in the solar photosphere. These waves have a period of 278 ± 41 seconds and a vertical phase velocity of about 2 km...  相似文献   

5.
With the advent of space telescopes, coronal magnetic loops, both within and outside active regions, are being observed with renewed interest. This paper is an attempt to outline some general physical considerations pertinent to such loops, as a prelude to more sophisticated modelling. For example, a loop that is stretched (or possibly twisted) too much may be subject to a thermal instability that cools its core to a new equilibrium below 105 K. Also a simple consequence of hydrostatic balance along an equilibrium loop is that, under some circumstances, the density inside a cool loop can be comparable with that outside, despite the much smaller scale height. Finally, when the equilibrium loop density is less than the ambient density, several small scale magnetohydrodynamic instabilities are sometimes efficient enough to generate a circulation that tends to equalize the densities.  相似文献   

6.
We present here a model, based on observations, for the magnetic-field equilibrium of a cool coronal loop. The pressure structure, taken from the Harvard/Skylab EUV data, is used to modify the usual force-free-field form in quasi-cylindrical symmetry. The resulting field, which has the same direction but different strength, is calculated and its variation displayed. Finally, localized interchange stability is evaluated and discussed, as the first step in a subsequent complete magnetohydrodynamic-stability analysis.  相似文献   

7.
The evolution of coronal loops in response to slow photospheric twisting motions is investigated using a variety of methods. Firstly, by solving the time-dependent equations it is shown that the field essentially evolves through a sequence of 2-D equilibria with no evidence of rapid dynamic evolution. Secondly, a sequence of 1-D equilibria are shown to provide a remarkably good approximation to the 2-D time-dependent results using a fraction of the computer time. Thus, a substantial investigation of parameter space is now possible. Finally, simple bounds on the 3-D stability of coronal loops are obtained. Exact stability bounds can be found by using these bounds to reduce the region of parameter space requiring further investigation. Twisting the loop too much shows that a 3-D instability must be triggered.  相似文献   

8.
We present the second part of a complete theory for the plasma and field structure of a cool coronal arch, corresponding to those observed in the EUV from Skylab. The global magneto-hydrodynamic (MHD) stability of a previously described equilibrium-loop model is evaluated, and compared with that of an unmodified ambient force-free field. The influence of the photospheric boundary condition is also evaluated, producing a specification of stability limits which depend on the relative field and plasma pressures and scale widths. The resulting restrictions on the allowable field configuration of a coronal loop are then compared with observed values. The implications of this general method for deducing small-scale coronal magnetic-field structure from the measured plasma profile of an emissive feature are also described.  相似文献   

9.
The linear MHD spectrum is investigated for cylindrical equilibrium models under typical coronal conditions. Non-ideal effects are included and attention is focussed on the thermal instability and the influence of perpendicular thermal conduction. It is shown that, when thermal conduction across magnetic field lines is neglected, the classic Alfvén and slow continua are supplemented by a new thermal continuum. Surprisingly, the existence of this non-ideal continuous spectrum appears to have been overlooked for a very long time. Unlike the (still purely oscillatory) Alfvén continuum modes and the slow continuum modes (overstable or damped), the thermal continuum modes are exponentially growing or decaying in time. As with the Alfvén and slow continua, discrete modes may be present above or below the thermal continuum, depending upon the choice of equilibrium parameters. These modes are localized using a simple WKB approach. The knowledge of the thermal subspectrum is then exploited to find necessary and sufficient conditions for instability.The inclusion of perpendicular thermal conduction eliminates this thermal continuum, but replaces it by a dense set of eigenmodes located at the same values of the growth rate. It is shown that perpendicular thermal conduction has no significant influence on the thermal stability of the equilibrium, though individual modes may be strongly influenced. The corresponding eigenfunctions still have a nearly-singular behaviour, but in addition they may contain a rapid spatial oscillation on a scale proportional to some power of the perpendicular thermal conduction coefficient. This rapid oscillation is confined to the most unstable part of the equilibrium and may be of relevance for the formation of fine-scale structure (threads) in prominences.Research Assistant of the National Fund for Scientific Research (Belgium).  相似文献   

10.
The hydrodynamic response of confined magnetic structures to strong heating perturbations is investigated by means of a timedependent one-dimensional code which incorporates the energy, momentum and mass conservation equations. The entire atmospheric structure from the chromosphere to the corona is taken into account. The results of model calculations are compared with observations of flares obtained with the X-Ray Polychromator experiment on the Solar Maximum Mission.  相似文献   

11.
The normal mode spectrum for the linearized MHD equations is investigated for a cylindrical equilibrium. This spectrum is examined for zero perpendicular thermal conduction, with both zero and non-zero scalar resistivity. Particular attention is paid to the continuous branches of this spectrum, or continuous spectra. For zero resistivity there are three types of continuous spectra present, namely the Alfvén, slow, and thermal continua. It is shown that when dissipation due to resistivity is included, the slow and Alfvén continua are removed and that the thermal continuum is shifted to a different position (where the shift is independent of the exact value of resistivity). The old location of the thermal continuum is covered by a dense set of nearly singular discrete modes called a quasi-continuum. The quasi-continuum is investigated numerically, and the eigenfunctions are shown to have rapid spatial oscillating behaviour. These oscillations are confined to the most unstable part of the equilibrium based on the Field criterion, and may be the cause of fine structure in prominences.  相似文献   

12.
Peres  Giovanni 《Solar physics》2000,193(1-2):33-52
This paper reviews the basic ideas underlying one-dimensional fluid dynamic models of coronal loops and presents some of their most recent applications. These models are an important theoretical support to explore the new scenario provided by the data of Yohkoh, SOHO, and TRACE, and are useful to interpret observations, when supplemented by appropriate spectral synthesis codes. Possible developments are also discussed.  相似文献   

13.
Y. Mok  G. Hoven 《Solar physics》1995,161(1):67-81
The dynamical properties of a realisticthermal-structure interface between a coronal loop and the chromosphere/photosphere are investigated by numerical simulations using acoustic and Alfvénic excitations. These properties are relevant to the end conditions seen by coronal MHD perturbations (e.g., waves or instabilities), in the absence of much slower energetics effects. Analytic studies of coronal-loop hydromagnetics have often made simplifying assumptions about the boundary conditions at the loop base in order to make their calculations tractable. However, in the presence of a transition region and chromosphere with rapidly varying plasma conditions, it is not clear how valid these heuristic assumptions are. In this study, we find that the discontinuous fluid-density model approximately represents the reflection/ transmission scaling with respect to varying transition-region density and temperature (i.e., dynamic impedance) ratios, although it does not quantitatively predict the chromospheric response to wave-like coronal activity. This disagreement is partially due to the finite width of the corona-to-photosphere transition.  相似文献   

14.
The magnetostatic equilibrium of a coronal loop in response to slow twisting of the photospheric footpoints is investigated. A numerical code is used to solve the full non-linear 2-D axisymmetric problem, extending earlier linearised models which assume weak twist and large aspect ratio. It is found that often the core of the loop tends to contract into a region of strong longitudinal field while the outer part expands. It is shown that, away from the photospheric footpoints, the equilibrium is very well approximated by a straight 1-D cylindrical model. This idea is used to develop a simple method for prescribing the footpoint angular displacement and calculating the equilibrium.  相似文献   

15.
Current dissipation models of coronal loop heating are studied. Turbulent current dissipation is shown to lead to a time dependent process because of an enormous mass motion induced in the current layer. A stationary heating process involves only ohmic heating, which requires a large current layer. To insure MHD stability, the loop must be composed of many elements with the oppositely directed currents. A stationary current dissipation process induces the plasma motion across the magnetic field into the loop and down the loop with the speeds v 104 cm s–1 and v 104 cm s–1, respectively. The pressure of the loop is also estimated to be proportional to the current density: p/J=6.3 × 10-8dyn/statamp.  相似文献   

16.
G. Borrini  G. Noci 《Solar physics》1982,77(1-2):153-166
The ionization conditions in coronal loops are investigated in the temperature range 2 × 105–2 × 106K, assuming velocity, density and temperature distributions computed for a siphon model of a pure hydrogen plasma. Use is made of the set of the carbon ions as an example of the general behaviour of the ions characteristic of that temperature range. It is found that the deviation from equilibrium ionization is large for subsonic-supersonic flow if the density is less than 5 × 109cm–-3, with the exception of the lower part of the first leg of very cool loops (T 2 × 10 K). With this exception cooler loops, given their larger density drop along the axis, show deviations from ionization equilibrium more easily than hotter ones, in spite of their lower flow velocity. We conclude that the possibility of a non-equilibrium state must be taken into account when deducing from measurements of line intensities the temperature of loops in which a flow may occur.Now at Institute for Plasma Research, Stanford University, as an E.S.A. Fellow.  相似文献   

17.
We suggest a way of self-consistently solving the problem of the excitation and rapid damping of coronal loop oscillations observed from the TRACE (Transition Region and Coronal Explorer) satellite. Oscillations are excited on the dispersion branch of fast magnetoacoustic waves, which propagate mainly across the magnetic field. The rapid damping of the observed oscillations is governed by the dispersion spreading of the pulse of these waves that was produced, for example, by a solar flare. The fundamental oscillation period is close to the period of the fundamental mode. Dissipative processes attributable to the nonideality of the plasma and the coronal-loop footpoints play no fundamental role.  相似文献   

18.
Equations of thermal equilibrium along coronal loops with footpoint temperatures of 2 × 104 K are solved. Three fundamentally different categories of solution are found, namely hot loops with summit temperatures above about 4 × 105 K, cool loops which are cooler than 8 × 104 K along their whole length and hot-cool loops which have summit temperatures around 2 × 104 K but much hotter parts at intermediate points between the summit and the footpoints. Hot loops correspond to the hot corona of the Sun. The cool loops are of relevance for fibrils, for the cool cores observed by Foukal and also for active-region prominences where the magnetic field is directed mainly along the prominence. Quiescent prominences consist of many cool threads inclined to the prominence axis, and each thread may be modelled as a hot-cool loop. In addition, it is possible for warm loops at intermediate summit temperatures (8 × 104K to 4 × 105 K) to exist, but the observed differential emission measure suggests that most of the plasma in the solar atmosphere is in either the hot phase or the cool phase. Thermal catastrophe may occur when the length or pressure of a loop is so small that the hot solution ceases to exist and there are only cool loop solutions. Many loops can be superimposed to form a coronal arcade which contains loops of several different types.  相似文献   

19.
The loss of equilibrium in coronal magnetic field structures is a possible source of energy for coronal heating and solar flares. We investigate whether such a loss of equilibrium occurs when a coronal loop is progressively twisted by photospheric motions. In studies of 2-D cylindrical equilibria, long loops have been found to be of constant cross-sectional area along most of their length, with axial variations being confined to narrow boundary layers. We use this information to develop a 1-D line-tied model, for a 2-D coronal loop. We specify the twist in terms of the azimuthal field and more physically, in terms of the photospheric footpoint displacement. In the former case we find a loss of equilibrium, but not in the latter. We also examine a twisted loop with a non-zero plasma pressure. The loss of equilibrium is only found at high-plasma . It is conjectured that such high- can occur in flare loops and prior to a prominence eruption. However, when the plasma evolves adiabatically, there is no loss of equilibrium.  相似文献   

20.
The radial oscillations of coaxial magnetic flux tubes with an azimuthal field in the shell modeling current-carrying coronal loops are studied in the cool plasma approximation. Since the concept of current-carrying coronal loops provides a theoretical basis for studying simple loop flares, finding their parameters by means of coronal seismology is a topical problem of modern solar physics. The dispersion equation for radial oscillations is derived and the dispersion curves are constructed. Oscillations with arbitrarily long periods are shown to exist at the fundamental radial mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号