首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy loads of the nutrients nitrogen and phosphorus cause severe damage in many waters in the world. Nutrient trading markets where capped firms can buy and sell nutrient load credits have been established in several countries in order to achieve certain nutrient reduction targets at minimum costs for society. The availability of multifunctional nutrient abatement measures that simultaneously reduce loads of both nutrients, such as wetland construction, raises the issue of credit stacking, i.e. whether a firm constructing the wetland should earn credits for both nutrients. This article examines theoretically and empirically the implications of establishing alternative nutrient trading market designs (markets with and without credit stacking, a market for a bundled payment of nutrients, and separate markets for either nutrient) for total costs and achievement of stipulated nutrient reduction targets for the Baltic Sea. The results show that the total abatement cost of achieving reduction targets of both nutrients is always lowest if a market design with credit stacking is established, that markets without credit stacking result in higher abatement cost and nutrient abatement in excess of the reduction targets, and that none of the single nutrient market systems is able to generate the required abatement of both nutrients. The application to the Baltic Sea shows that the total abatement cost can be 20% higher when credit stacking is not allowed than when it is allowed.  相似文献   

2.
Primary production, nutrient concentrations, phytoplankton biomass (incl. chlorophyll a) and water transparency (Secchi depth), are important indicators of eutrophication. Earlier basin-wide primary production estimates for the Baltic Sea, a shallow shelf sea, were based mainly on open-sea data, neglecting the fundamentally different conditions in the large river plumes, which might have substantially higher production. Mean values of the period 1993–1997 of nutrient concentrations (phosphate, nitrate, ammonium and silicate), phytoplankton biomass, chlorophyll a (chl a) concentration, turbidity and primary production were calculated in the plumes of the rivers Oder, Vistula and Daugava and Klaipeda Strait as well as the open waters of the Arkona Sea, Bornholm Sea, eastern Gotland Sea and the Gulf of Riga. In the plumes, these values, except for primary production, were significantly higher than in the open waters. N:P ratios in the plumes were >16 (with some exceptions in summer and autumn), indicating potential P-limitation of phytoplankton growth, whereas they were <16 in the open Baltic Proper, indicating potential N-limitation. On the basis of in situ phytoplankton primary production, phytoplankton biomass and nutrient concentrations, the large river plumes and the Gulf of Riga could be characterized as eutrophic and the outer parts of the coastal waters and the open sea as mesotrophic. Using salinity to define the border of the plumes, their mean extension was calculated by means of a circulation model. Taking into account the contribution of coastal waters, the primary production in the Baltic Proper and the Gulf of Riga was 42·6 and 4·3×106 t C yr−1, respectively. Hence, an annual phytoplankton primary production in the whole Baltic Sea was estimated at 62×106 t C yr−1. The separate consideration of the plumes had only a minor effect on the estimation of total primary production in comparison with an estimate based on open sea data only. There is evidence for a doubling of primary production in the last two decades. Moreover, a replacement of diatoms by dinoflagellates during the spring bloom was noticed in the open sea but not in the coastal waters. A scheme for trophic classification of the Baltic Sea, based on phytoplankton primary production and biomass, chl a and nutrient concentrations, is proposed.  相似文献   

3.
A full re-calculation of Water Framework Directive reference and target concentrations for German coastal waters and the western Baltic Sea is presented, which includes a harmonization with HELCOM Baltic Sea Action Plan (BSAP) targets. Further, maximum allowable nutrient inputs (MAI) and target concentrations in rivers for the German Baltic catchments are suggested. For this purpose a spatially coupled, large scale and integrative modeling approach is used, which links the river basin flux model MONERIS to ERGOM-MOM, a three-dimensional ecosystem model of the Baltic Sea. The years around 1880 are considered as reference conditions reflecting a high ecological status and are reconstructed and simulated with the model system. Alternative approaches are briefly described, as well. For every WFD water body and the open sea, target concentrations for nitrogen and phosphorus compounds as well as chlorophyll a are provided by adding 50% to the reference concentrations. In general, the targets are less strict for coastal waters and slightly stricter for the sea (e.g. 1.2 mg/m³ chl.a summer average for the Bay of Mecklenburg), compared to current values. By taking into account the specifics of every water body, this approach overcomes the inconsistencies of earlier approaches. Our targets are well in agreement with the BSAP targets, but provide spatially refined and extended results. The full data are presented in Appendix A1 and A2.To reach the targets, German nitrogen inputs have to be reduced by 34%. Likely average maximum allowable concentrations in German Baltic rivers are between 2.6 and 3.1 mg N/l. However, the concrete value depends on the scenario and uncertainties with respect to atmospheric deposition. To our results, MAI according to the BSAP may be sufficient for the open sea, but are not sufficient to reach a good WFD status in German coastal waters.  相似文献   

4.
The Baltic Sea Level Project is an international scientific observation program to unify the vertical datums of the countries of the Baltic Sea with GPS measurements. In total, 35 tide gauges on shores and islands of the Baltic were occupied with GPS in 1993. After computing a new gravimetric geoid over the Baltic Sea, it was possible to unify the datums as well as to calculate the orthometric heights and the sea surface topography values for the tide gauge stations. The results obtained are shown.  相似文献   

5.
Sea level changes in the Baltic Sea are dominated by internal, short-term variations that are mostly caused by the ephemeral nature of atmospheric conditions over the Baltic area. Tides are small and their influence decreases from western parts of the Baltic Sea to the Baltic Proper. Superimposed to the large short-term sea level changes (up to few decimeters from day to day) are seasonal and interannual variations (centimeters to decimeters). This study focuses on the comparison of sea surface heights obtained from observations and from a high resolution oceanographic model of the Baltic Sea. From this comparison, the accuracy of the modeled sea surface variations is evaluated, which is a necessary precondition for the further use of the oceanographic model in geodetic applications. The model reproduces all observed Baltic sea level variations very reliably with an accuracy of 5 to 9 cm (rms) for short-term variations (up to 2 months) and 8 cm (rms) for long-term variations (>2 months). An additional improvement of the model can be attained by including long-period sea level variations of the North Sea. The model performs well also in the case of extreme sea level events, as is shown for a major storm surge that occurred at the southern coast of the Baltic Sea in November 1995.  相似文献   

6.
The St. Petersburg Baltic eutrophication model (SPBEM) is used to assess the ecological condition of the sea under possible changes in climate and nutrient loads in the 21st century. According to model estimates, in the future climate water quality will worsen, compared to modern conditions. This deterioration is stronger in the climate warming scenario with a stronger change in future near-surface air temperature. In the considered scenarios of climate change, climate warming will lead to an increase in the area of anoxic and hypoxic zones. Reduction of nutrient loading, estimated in accordance with the Baltic Sea Action Plan, will only be able to partially compensate for the negative effects of global warming.  相似文献   

7.
The EU enlargement brought the Baltic Sea into the sphere of EU environmental policymaking, making the sea, with the exception of Russia, an EU inland sea. Yet, the state of the Baltic Sea environment is deteriorating at an alarming pace. This paper describes the evolution of the EU governance of the Baltic Sea environment, focussing on governance barriers. The findings demonstrate how the choice of analytical lens influences the construction of governance barriers and the respective intervention strategies. Such understanding can help policy practitioners in their search for successful measures to improve the governance situation in the Baltic Sea region.  相似文献   

8.
The mean sea surface topography in the Baltic Sea and adjacent waters is reliably known in the Nordic height system NH 60. Using this knowledge we estimate differences between NH 60, based on the Amsterdam zero point, and Russian, Polish, and German height systems along the southeastern coast of the Baltic Sea, based on the Kronstadt zero point. The differences agree within a few centimeters. We also make a simple study of the mean sea level difference between Kronstadt and Amsterdam (which is found to have been approximately 25 cm when sea level was still to be seen there).  相似文献   

9.
The connection between variations in the North Atlantic Oscillation (NAO) index and the Baltic sea level has been investigated for the period 1825–1997. The association between the NAO and the strength of the zonal geostrophic wind stress over the Northwest Atlantic suggests an NAO impact on Baltic sea level variations, because the monthly mean sea level mainly is determined by externally driven variations caused by wind conditions over the North Sea. Several period bands were found to have high correlation between oscillations in the winter (JFM) NAO index and the Baltic Sea winter mean sea level. The correlation was, however, higher in the 20th century than in the 19th. During the last two decades, the correlation between the NAO index and the sea level has been exceptionally high. The winter mean of a regional atmospheric circulation index had a correlation with the Kattegat winter mean sea level of 0.93. With the Baltic sea level the correlation was 0.91, compared with the NAO index correlation for the same period of 0.74. The regional index also showed a high correlation with the mean summer and mean autumn sea levels, when the corresponding seasonal NAO indices showed a weak connection. The temporal variation of the connection with the NAO index implies a regional atmospheric circulation occasionally differing from the large-scale circulation associated with the NAO. Seasonal means of the sea level in Stockholm do, however, reflect the regional wind climate to a large extent, and the Baltic sea level is a useful proxy for identifications of climatic dependencies in the region.  相似文献   

10.
The mean sea level along the coasts of the Skagerrak, the Kattegat, and the Danish Straits—i.e., the transition area between the North Sea and the Baltic Sea—has been computed geodetically. The basis consists of mean sea level data from Denmark, Norway, and Sweden in various more or less inappropriate height systems. These are transformed and unified into a common height system relevant for oceanographic purposes to show the deviation of the mean sea level (1960) from the mean geoid, with Normaal Amsterdams Peil (NAP) as zero. The geodetically determined mean sea surface is compared with oceanographic model results for parts of the area. Among other findings, the outflow of low‐salinity water from the Baltic Sea, as well as its separation from high‐salinity North Sea water along the Kattegat‐Skagerrak front are clearly revealed.  相似文献   

11.
Editorial     
Karl Rinner 《Marine Geodesy》2013,36(3):203-205
The long‐term mean sea level in the Baltic Sea is investigated using the coupled three‐basin model constructed by Carlsson (1997). The model is forced by the observed sea level in the Kattegat, the freshwater supply, horizontal air pressure and density gradients, and the wind stress. Both the seasonal variations and the slope of the mean sea level are investigated and compared with the results of another oceanographic model (Lisitzin, 1962) and a geodetic model (Ekman &; Mäkinen, 1996). In the geodetic model an unofficial height system, NH60, is used, and one part of the investigation is to find out whether this height system is useful for oceanographers. The estimated mean sea level difference between the northern and the southern parts of the Baltic Sea are: 17.1 cm (the present model), 26 cm (Lisitzin's model), and 18.3 cm (the geodetic model). It is concluded that the mean sea level difference between the northern and southern parts of the Baltic Sea is due mainly to horizontal variations of density and air pressure, and that the height system NH60 is suitable for oceanographie applications.  相似文献   

12.
This article addresses the institutional ambiguity that exists between the European, Regional and Member State levels in the implementation of the Marine Strategy Framework Directive (MSFD). The two main reasons for the emergence of institutional ambiguity are (1) the MSFD being a framework directive and (2) Member States are required to coordinate the implementation of the MFSD through the Regional Sea Conventions. Institutional ambiguity refers to the interference zone between different institutional settings that come together in new policy practices. New rules of the game are needed to bring these institutional settings together and the room to manoeuvre for the actors who negotiate these rules is a defining feature of institutional ambiguity. This article analyses the institutional ambiguity associated with MSFD implementation on the European and regional level for four European Seas: the North Sea, the Baltic Sea, the Mediterranean Sea and the Black Sea. The results indicate different levels of institutional ambiguity in each of the four regions, with the lowest level of ambiguity in the Baltic Sea and the highest in the Mediterranean Sea. Institutional ambiguity also exists on the European level, as coordination efforts have not resulted in clear directions for the implementation of the MSFD as yet. The level of institutional ambiguity is influenced by the relative number of EU member states bordering the particular sea and whether they consider implementation of the MFSD to be urgent. Member States bordering the Mediterranean and the Black Seas lack the support of Regional Sea Conventions in addition to receiving limited direction from the European level.  相似文献   

13.
Marine environments and the ecosystem services they provide are threatened throughout the world. Using an extensive data set obtained from a coordinated survey across all nine littoral countries, this study examines the recreational use of and public perceptions towards the Baltic Sea, providing support for marine policies, including the European Union Marine Strategy Framework Directive. The findings indicate that the Baltic Sea is an important recreation area for residents of the littoral states, as the majority of people spend leisure time there. Swedes, Danes and Finns use the sea the most, and the most common activities are beach recreation and swimming. People are concerned over the state of the Baltic Sea, especially in Finland, Russia and Sweden. Poles, Danes and Finns have the most positive attitude towards contributing financially to improving the state of the Baltic Sea. Additional coordinated research efforts across all nine littoral countries are needed to quantify the monetary benefits of improving the state of the sea. However, even the present results provide evidence on the cultural importance of the Baltic Sea, suggesting that policy makers need to take stronger action to sustain the provision of recreational ecosystem services and safeguarding the well-being of marine ecosystems to the current and future generations.  相似文献   

14.
Long (>30 years) monthly records of relative sea-level heights from tide gauges in the Baltic sea are analyzed. Time series clustering based on forecast densities is applied in order to describe regional sea-level variability in the Baltic Sea in terms of future relative heights. The tide gauge records are clustered on the basis of forecasts at 3-month and 6-month horizons. For the 3-month horizon, the results of the cluster analysis show a fairly spatial coherency in terms of grouping together locations from the same sub-basin, with the northern records in the Bothnian Sea and Gulf of Finland clustering together, followed by the tide gauges in the Baltic Proper and lastly the southernmost stations in the western Baltic. For the 6-month horizon, the results show a higher degree of homogeneity between different locations, but a clear separation between the stations at the Baltic entrance and the tide gauges inside the Baltic basin. Moreover, when considering detrended records, reflecting mainly the seasonal cycle, the clustering results are more homogeneous and suggest a distinct response of coastal sea-level in spring and in summer.  相似文献   

15.
Statistical analysis of the extreme values of the Baltic Sea level has been performed for a series of observations for 15–125 years at 13 tide gauge stations. It is shown that the empirical relation between value of extreme sea level rises or ebbs (caused by storm events) and its return period in the Baltic Sea can be well approximated by the Gumbel probability distribution. The maximum values of extreme floods/ebbs of the 100-year recurrence were observed in the Gulf of Finland and the Gulf of Riga. The two longest data series, observed in Stockholm and Vyborg over 125 years, have shown a significant deviation from the Gumbel distribution for the rarest events. Statistical analysis of the hourly sea level data series reveals some asymmetry in the variability of the Baltic Sea level. The probability of rises proved higher than that of ebbs. As for the magnitude of the 100-year recurrence surge, it considerably exceeded the magnitude of ebbs almost everywhere. This asymmetry effect can be attributed to the influence of low atmospheric pressure during storms. A statistical study of extreme values has also been applied to sea level series for Narva over the period of 1994–2000, which were simulated by the ROMS numerical model. Comparisons of the “simulated” and “observed” extreme sea level distributions show that the model reproduces quite satisfactorily extreme floods of “moderate” magnitude; however, it underestimates sea level changes for the most powerful storm surges.  相似文献   

16.
The aim of this work is to review studies to evaluate how emissions from fish cage farms cause eutrophication effects in marine environments. The focus is on four different scales: (i) the conditions at the site of the farm, (ii) the local scale related to the coastal area where the farm is situated, (iii) the regional scale encompassing many coastal areas and (iv) the international scale including several regional coastal areas. The aim is to evaluate the role of nutrient emissions from fish farms in a general way, but all selected examples come from the Baltic Sea. An important part of this evaluation concerns the method to define the boundaries of a given coastal area. If this is done arbitrarily, one would obtain arbitrary results in the environmental consequence analysis. In this work, the boundary lines between the coast and the sea are drawn using GIS methods (geographical information systems) according to the topographical bottleneck method, which opens a way to determine many fundamental characteristics in the context of mass balance calculations. In mass balance modelling, the fluxes from the fish farm should be compared to other fluxes to, within and from coastal areas. Results collected in this study show that: (1) at the smallest scale (<1 ha), the "footprint" expressing the impact areas of fish cage farm often corresponds to the size of a "football field" (50-100 m) if the annual fish production is about 50 ton, (2) at the local scale (1 ha to 100 km2), there exists a simple load diagram (effect-load-sensitivity) to relate the environmental response and effects from a specific load from a fish cage farm. This makes it possible to obtain a first estimate of the maximum allowable fish production in a specific coastal area, (3) at the regional scale (100-10,000 km2), it is possible to create negative nutrient fluxes, i.e., use fish farming as a method to reduce the nutrient loading to the sea. The breaking point is to use more than about 1.1 g wet weight regionally caught wild fish per gram feed for the cultivated fish, and (4) at the international scale (>10,000 km2) related to the Baltic Proper, the contribution from fish farms to the overall nutrient fluxes are very small. We have also given two case-studies at the local scale where the impact of the fish farm emissions are greatest and the idea is to identify coastal areas unsuitable and suitable for fish cage farms and the reasons why. It should also be stressed that the results presented here are exemplified using emissions from fish farms, but that the underlying principles to evaluate the ecosystem effects of nutrient discharges from point source emissions are valid in a wider and more general perspective.  相似文献   

17.
Estuaries are often seen as important filters between land and the sea for inorganic and organic nutrients. This paper aims at estimating the estuarine fluxes of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and dissolved silicate for the major oligothrophic and pristine rivers running into the Bothnian Bay (BB) and the Bothnian Sea (BS), the northern subarctic subbasins of the Baltic Sea. Long-term data sets for these rivers and their estuaries as well as for the BB and BS were analyzed to assess whether these estuaries are sinks for inorganic nutrients. Most studied estuaries can be characterized as salt wedge estuaries with little exchange between the fresh seaward-flowing river water and the inward-flowing seawater. Estimates of water transit times ranged between 1 and 14 days. In most estuaries of the BB, N-depleted river water meets P-depleted seawater during the growth period. These findings were corroborated by mixing diagrams showing that the inner areas of the estuaries were N-depleted in summer. In the BS, on the other hand, both rivers and seawater were mostly N-depleted during summer. Thus, for most estuaries of this region of the Baltic Sea, primary productivity is presumably lower than or equal to that of offshore. The low productivity is also reflected in the sediments. The coastal sediments did not differ from the offshore stations in accumulation rates as well as the content of organic matter and nutrients, indicating that estuarine nutrient burial is not always higher as normally observed in other temperate systems. Finally, the estuaries of the pristine rivers in the northernmost part of the BB import DIN during summer, whereas the estuaries of the rivers in the BS import DIP during winter, from the sea.  相似文献   

18.
With improved observation methods, increased winter navigation, and increased awareness of the climate and environmental changes, research on the Baltic Sea ice conditions has become increasingly active. Sea ice has been recognized as a sensitive indicator for changes in climate. Although the inter-annual variability in the ice conditions is large, a change towards milder ice winters has been detected from the time series of the maximum annual extent of sea ice and the length of the ice season. On the basis of the ice extent, the shift towards a warmer climate took place in the latter half of the 19th century. On the other hand, data on the ice thickness, which are mostly limited to the land-fast ice zone, basically do not show clear trends during the 20th century, except that during the last 20 years the thickness of land-fast ice has decreased. Due to difficulties in measuring the pack-ice thickness, the total mass of sea ice in the Baltic Sea is, however, still poorly known. The ice extent and length of the ice season depend on the indices of the Arctic Oscillation and North Atlantic Oscillation. Sea ice dynamics, thermodynamics, structure, and properties strongly interact with each other, as well as with the atmosphere and the sea. The surface conditions over the ice-covered Baltic Sea show high spatial variability, which cannot be described by two surface types (such as ice and open water) only. The variability is strongly reflected to the radiative and turbulent surface fluxes. The Baltic Sea has served as a testbed for several developments in the theory of sea ice dynamics. Experiences with advanced models have increased our understanding on sea ice dynamics, which depends on the ice thickness distribution, and in turn redistributes the ice thickness. During the latest decade, advance has been made in studies on sea ice structure, surface albedo, penetration of solar radiation, sub-surface melting, and formation of superimposed ice and snow ice. A high vertical resolution has been found as a prerequisite to successfully model thermodynamic processes during the spring melt period. A few observations have demonstrated how the river discharge and ice melt affect the stratification of the oceanic boundary layer below the ice and the oceanic heat flux to the ice bottom. In general, process studies on ice–ocean interaction have been rare. In the future, increasingly multidisciplinary studies are needed with close links between sea ice physics, geochemistry and biology.  相似文献   

19.
The study focused on the evaluation of probable changes in the severity of sea ice conditions occurring in 3 selected areas of the Baltic Sea: the Gulf of Bothnia, Gulf of Finland and the Southern Baltic Sea up to the year 2100. The areas have been chosen due to the high intensity of marine traffic (the Gulfs??of Bothnia and of Finland) and due to differences in sea ice conditions; winters in the Gulf of Bothnia were characterized as the most severe, whereas in the Southern Baltic were classified as the mildest ones. Consequently, three scenarios were taken into account in the study: A2 (slow rate of global economic development, market scenario), A1B (regional scenario, rapid economic development, with ecological priorities), B1 (sustainable, median economic development with strong ecological priorities), all three constructed on the basis of Special Report on Emissions Scenarios (SRES models of greenhouse gas emission). The probable changes of sea ice conditions expressed as severity index S were calculated from these models. The main results of the investigation are as follows, the variety of sea ice conditions occurring in specific regions of the Baltic will remain stable (i.e. the most severe winter conditions will still occur in Gulf of Bothnia, while the mildest in the Southern Baltic Sea). The most significant changes are likely to occur in the Southern Baltic, where some winters without ice cover in the Vistula Lagoon may happen. Nonetheless, some extremely severe winters will occur and also within specific seasons more winters with a lower number of days with ice will occur.  相似文献   

20.
The sensitivity of the Baltic Sea mean salinity to climatic changes of the freshwater supply is analyzed. The average salinity of the Baltic Sea is about 6‰. The low salinity is an effect of a large net freshwater supply and narrow and shallow connections with the North Sea. As a result of mixing in the entrance area, a large portion of the outflowing Baltic Sea water returns with the inflowing salty water and thus lowers the salinity of the Baltic Sea deep-water considerably. This recycling of the Baltic Sea water is a key process determining the salinity of today's Baltic Sea. The sensitivity of this recycling, and thus of the Baltic Sea salinity, to climatic changes in the freshwater supply is analyzed. A simple model is formulated for the variations of the Baltic Sea freshwater content. Historical data of the freshwater supply and the salinity in the Baltic Sea are used in the model to achieve an empirical expression relating variations of the recycling of Baltic Sea water to the variations of the freshwater supply. The recycling is found to be very sensitive to the freshwater supply. We find that an increase of freshwater supply of 30% is the level above which the Baltic Sea would turn into a lake. Recent climate modeling results suggest that river runoff to the Baltic Sea may increase dramatically in the future and thus possibly put the Baltic Sea into a new state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号