首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Following the first International Conference on Gas in Marine Sediments in Edinburgh, UK (1990), another eight successful conferences have provided a continuous forum for scientists from a variety of disciplines, organisations and countries. The 9th meeting of the Shallow Gas Group was held in September 2008 in Bremen, a hanseatic city more than 1,200 years old in northern Germany. The Shallow Gas Group was joined for this conference by participants of the HERMES EU-funded project and by members of an industry-funded project. Volume 30 (3/4) of Geo-Marine Letters is a double issue containing 25 selected papers from the 9th conference in Bremen, guest edited by G. Bohrmann and B.B. Jørgensen. The papers represent the broad spectrum of oral and poster contributions from the conference, covering a wide range of aspects of gas in marine sediments from many parts of the world. The next conference of the Shallow Gas Group is planned to be held in Listvyanka at Lake Baikal, Russia, in September 2010.  相似文献   

2.
Gridded fields of sea surface temperature (SST), sea level pressure (SLP), and wind speed were used in combination with data for the atmospheric mole fraction of CO2 and an empirical relationship between measured values of the fugacity of carbon dioxide in surface water and SST, to calculate the air–sea CO2 flux in the northern North Atlantic. The flux was calculated for each of the months October–March, in the time period 1981 until 2001, allowing for an assessment of the interannual variations in the region. Locally and on a monthly time scale, the interannual variability of the flux could be as high as ±100% in regions seasonally covered by sea ice. However, in open-ocean areas the variability was normally between ±20% and ±40%. The interannual variability was found to be approximately halved when fluxes averaged over each winter season were compared. Summarised over the whole northern North Atlantic, the air to sea carbon flux over winter totalled 0.08 Gton, with an interannual variability of about ±7%. On a monthly basis the interannual variations were slightly higher, about ±8% to ±13%. Changes in wind speed and atmospheric fCO2 (the latter directly related to SLP variations) accounted for most of the interannual variations of the computed air–sea CO2 fluxes. A tendency for increasing CO2 flux into the ocean with increasing values of the NAO index was identified.  相似文献   

3.
4.
5.
6.
Although there are many research studies on the northern and southern branches of the North Anatolian fault, cutting through the deep basins of the Sea of Marmara in the north and creating a series of pull-apart basins on the southern mainland, little data is available about the geometrical and kinematical characteristics of the middle strand of the North Anatolian fault. The first detailed geometry of the middle strand of the North Anatolian fault along the southern Marmara shelf, including the Gemlik and Band?rma Bay, will be given in this study, by a combined interpretation of different seismic data sets. The characteristic features of its segments and their importance on the paleogeographic evolution of the southern shelf sub-basins were defined. The longest one of these faults, the Armutlu-Band?rma segment, is a 75-km long dextral strike-slip fault which connects the W–E trending Gençali segment in the east and NE–SW trending Kap?da?-Edincik segment in the west. In this context, the Gemlik Bay opened as a pull-apart basin under the control of the middle strand whilst a new fault segment developed during the late Pleistocene, cutting through the eastern rim of the bay. In this region, a delta front forming the paleoshoreline of the Gemlik paleolake was cut and shifted approximately 60 ± 5 m by the new segment. The same offset on this fault was also measured on a natural scarp of acoustic basement to the west and integrated with this paleoshoreline forming the slightly descending topset–foreset reflections of the delta front. Therefore the new segment is believed to be active at least for the last 30,000 years. The annual lateral slip rate representing this period of time will be 2 mm, which is quite consistent with modern GPS measurements. Towards the west, the Band?rma Bay is a rectangular transpressional basin whilst the Erdek Bay is a passive basin under the control of NW–SE trending faults. When the water level of the paleo-Marmara lake dropped down to ?90 m, the water levels of the suspended paleolakes of Band?rma and Gemlik on the southern shelf were ?50.3 (?3.3 Global Isostatic Adjustment—GIA) and ?60.5 (?3.3 GIA) m below the present mean sea level, respectively. As of today a similar example can be seen between the Sea of Marmara and the shallow freshwater lakes of Manyas and Uluabat. Similarly, the paleolakes of Gemlik and Bandirma were affected by the water level fluctuations at different time periods, even though both lakes were isolated from the Sea of Marmara during the glacial periods.  相似文献   

7.
An integrated provenance study using provenance-sensitive heavy mineral ratios, mineral chemistry and U/Pb dating of detrital zircons has revealed significant changes in sediment provenance during deposition of the Early to Middle Jurassic succession in the Heidrun Field, offshore Mid-Norway. The variations result from the interplay of two source regions, one of which was located on the Norwegian landmass and the other on the conjugate East Greenland margin. Sediment sourced from central East Greenland is distinguished by high garnet:zircon, high rutile:zircon, low chrome spinel:zircon, garnet assemblages rich in low-Ca, high-Mg varieties, and zircon populations that include an Archean group, a diverse range of Early–Middle Proterozoic grains, and an Early Paleozoic group. These features indicate derivation from a high-grade (granulite facies) metasedimentary terrain together with Archean basement and Early Paleozoic granitoids. Norwegian-sourced sandstones differ by having lower garnet:zircon and rutile:zircon, variable chrome spinel:zircon, garnet assemblages scarce in low-Ca, high-Mg varieties, and zircon populations that lack an Archean group. Derivation from the Caledonian Nappe Domain, comprising metasediments (predominantly at amphibolite facies), ophiolites and Early Paleozoic granitoids, is indicated. Initially, during deposition of the non-marine lower part of the Åre Formation (Hettangian–Sinemurian), sediment was fed from the west, but in the upper (tidally influenced) part of the Åre Formation (Sinemurian–Pliensbachian), Norwegian-sourced material appears. Greenland-derived material disappears in the subsequent Tilje Formation (Pliensbachian), with the Tilje and subsequent Ror and Ile Formations (Toarcian–Aalenian) being predominantly sourced from the east. The regional regression at the base of the Garn Formation (Bajocian) was accompanied by a switch in provenance, with Greenland-derived material replacing sediment sourced from Norway. Variations in mineralogy offer a framework for correlation on both local and sub-regional scales.  相似文献   

8.
9.
10.
11.
12.
Nearly complete side-scan, bathymetry and magnetic coverage documents the evolution of the geometry of the East Pacific Rise (EPR) between 16° and 19° S since 5 Ma. Lineaments visible in SeaMARC II, H-MR1 and Sea Beam 2000 side-scan data correspond dominantly to normal fault scarps which have developed in the axial region perpendicular to the least compressive stress. Except near overlapping spreading centers (OSCs), the lineament orientations are taken to represent the perpendicular to the instantaneous Pacific-Nazca spreading direction. Their dominant orientation in the axial region is 012°, in good agreement with the prediction of the current model of relative plate motion (DeMets et al., 1994). However, the variations of the lineament azimuths with age show that there has been a small (3°–5°) clockwise change in the Nazca-Pacific relative motion since 5 Ma. There is also a distinct population of lineaments which strike counterclockwise to the ambient orientation. These discordant lineaments form somewhat coherent patterns on the seafloor and represent the past migration tracks of several left-stepping OSCs. Concurrent analysis of these discordant zones and the magnetic anomalies, reveals that up to 1 Ma, the EPR was offset by a few large, left-stepping OSCs. These OSCs were bisected into smaller OSCs by new spreading segments forming within their overlap basins. The smaller OSCs proceeded to migrate rapidly and were further bisected by newly spawned ridge segments until the present staircase of small, left-stepping OSCs was achieved. By transferring lithosphere from one plate to the other, these migration events account remarkably well for the variable spreading asymmetry in the area. Between 16° and 19° S, the present EPR is magmatically very robust, as evidenced by its inflated morphology, the profuse volcanic and hydrothermal activity observed from submerisbles and towed cameras, the geochemistry of axial basalts, and seismic and gravity data. Since 1 Ma, all the OSCs have migrated away from the shallowest, most robust section of the ridge between 17° and 17°30 S, which was previously offset by a large OSC. We propose that the switch from a presumed starved magmatic regime typically associated with large OSCs to the presently robust magmatic regime occurred when the EPR overrode a melt anomaly during its westward migration relative to the asthenosphere. The resulting increase in melt supply at 17°–17°30 S has fed the migration of axial discontinuities for this section of the southern EPR since 1 Ma.  相似文献   

13.
14.
15.
The English Channel hosts a high density of human activities, which result in strong pressures and impacts on its marine ecosystem. The European Union's INTERREG programme funds projects to promote sustainable development through ecosystem-based management and the development of socio-economic services in the Channel region. An analysis of the themes studied during INTERREG IVA projects to date reveals both gaps that should be addressed in the future, as well as good practices that should be maintained and promoted. This analysis was used to provide advice and recommendations on knowledge gaps which may form the foundation of future projects for European programmes such as those in the next INTERREG project call (2015–2020).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号