首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We establish constraints on the mass and abundance of black holes in the Galactic halo by determining their impact on globular clusters, which are conventionally considered to be little evolved. Using detailed Monte Carlo simulations and simple evolutionary models, we argue that black holes with masses M bh≳(1–3)×106 M can comprise no more than a fraction f bh≈0.17 of the total halo density at Galactocentric radius R ≈8 kpc. This bound arises from requiring stability of the cluster mass function. A more restrictive bound may be derived if we demand that the probability of destruction of any given, low-mass M c≈(2.5–7.5)×104 M] globular cluster not exceed 50 per cent; this bound is f bh≲0.025–0.05 at R ≈8 kpc. This constraint improves those based on disc heating and dynamical friction arguments as well as current lensing results. At smaller radius the constraint on f bh strengthens, while at larger radius an increased fraction of black holes is allowed.  相似文献   

2.
We use deep Hubble Space Telescope photometry of the rich, young (∼20- to 45-Myr old) star cluster NGC 1818 in the Large Magellanic Cloud to derive its stellar mass function (MF) down to  ∼0.15 M  . This represents the deepest robust MF thus far obtained for a stellar system in an extragalactic, low-metallicity  ([Fe/H]≃−0.4 dex)  environment. Combining our results with the published MF for masses above  1.0 M  , we obtain a complete present-day MF. This is a good representation of the cluster's initial MF (IMF), particularly at low masses, because our observations are centred on the cluster's uncrowded half-mass radius. Therefore, stellar and dynamical evolution of the cluster will not have affected the low-mass stars significantly. The NGC 1818 IMF is well described by both a lognormal and a broken power-law distribution with slopes of  Γ= 0.46 ± 0.10  and  Γ≃−1.35  (Salpeter-like) for masses in the range from 0.15 to  0.8 M  and greater than  0.8 M  , respectively. Within the uncertainties, the NGC 1818 IMF is fully consistent with both the Kroupa solar neighbourhood and the Chabrier lognormal mass distributions.  相似文献   

3.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

4.
We report on the results of an I -band time-series photometric survey of NGC 2547 using the MPG/ESO 2.2-m telescope with Wide Field Imager, achieving better than 1 per cent photometric precision per data point over  14 ≲ I ≲ 18  . Candidate cluster members were selected from a V versus V − I colour–magnitude diagram over  12.5 < V < 24  (covering masses from  0.9 M  down to below the brown dwarf limit), finding 800 candidates, of which we expect ∼330 to be real cluster members, taking into account contamination from the field (which is most severe at the extremes of our mass range). Searching for periodic variations in these gave 176 detections over the mass range  0.1 ≲ M /M≲ 0.9  . The rotation period distributions were found to show a clear mass-dependent morphology, qualitatively intermediate between the distributions obtained from similar surveys in NGC 2362 and 2516, as would be expected from the age of this cluster. Models of the rotational evolution were investigated, finding that the evolution from NGC 2362 to 2547 was qualitatively reproduced (given the uncertainty in the age of NGC 2547) by solid body and core-envelope decoupled models from our earlier NGC 2516 study without need for significant modification.  相似文献   

5.
We determine the binary star fraction as a function of radius in NGC 1818, a young rich cluster in the Large Magellanic Cloud, using Hubble Space Telescope images in bands F336W (∼ U ) and F555W (∼ V ). Our sample includes binaries with M primary ∼ 2–5.5 M and M secondary ≳ 0.7 Mprimary. The binary fraction increases towards the cluster centre, from ∼ 20 ± 5 per cent in the outer parts, to ∼ 35 ± 5 per cent inside the core. This increase is consistent with dynamical mass segregation and need not be primordial. We compare our results with expectations from N -body models, and discuss the implications for the formation and early evolution of such clusters.  相似文献   

6.
We present discovery images, together with follow-up imaging and spectroscopy, of two large-separation gravitational lenses found by our survey for wide arcs [the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY)]. The survey exploits the multicolour photometry of the Sloan Digital Sky Survey to find multiple blue components around red galaxies. CASSOWARY 2 (or 'the Cheshire Cat') is composed of two massive early-type galaxies at   z = 0.426  and 0.432, respectively, lensing two background sources, the first a star-forming galaxy at   z = 0.97  and the second a high -redshift galaxy  ( z > 1.4)  . There are at least three images of the former source and probably four or more of the latter, arranged in two giant arcs. The mass enclosed within the larger arc of radius ∼11 arcsec is  ∼33 × 1012 M  . CASSOWARY 3 comprises an arc of three bright images of a   z = 0.725  source, lensed by a foreground elliptical at   z = 0.274  . The radius of the arc is ∼4 arcsec and the enclosed mass is  ∼2.5 × 1012 M  . Together with earlier discoveries like the Cosmic Horseshoe and the 8 o'clock Arc, these new systems, with separations intermediate between the arcsecond-separation lenses of typical strong galaxy lensing and arcminute-separation cluster lenses, probe the very high end of the galaxy mass function.  相似文献   

7.
We analyse a sample of 507 evolved (OH/IR) stars in the region (10°>ℓ>−45°), (| b |<3°). We derive average ages for subsets of this sample, and use those sets as beacons for the evolution of the Galaxy. In the bulge, the oldest OH/IR stars in the plane are 7.5 Gyr (1.3 M), and in the disc 2.7 Gyr (2.3 M). The vertical distribution of almost all AGB stars in the disc is found to be nearly exponential, with scaleheight increasing from 100 pc for stars ≲1 Gyr old to 500 pc for stars ≳5 Gyr old. There may be a small, disjunct population of OH/IR stars. The radial distribution of AGB stars is dictated by the metallicity gradient. Unequivocal morphological evidence is presented for the existence of a central bar, but parameters can be constrained only for a given spatial-density model. Using a variety of indicators, we identify the radii of the inner ultraharmonic (2.5 kpc) and corotation resonance (3.5 kpc). We show that the 3-kpc arm is likely to be an inner ring, as observed in other barred galaxies, by identifying a group of evolved stars that is connected to the 3-kpc H  i filament. Also, using several observed features, we argue that an inner-Lindblad resonance exists, at ∼1–1.5 kpc. The compositions of OH/IR populations within 1 kpc of the Galactic Centre give insight into the bar-driven evolution of the inner regions. We suggest that the bar is ∼8 Gyr old, relatively weak (SAB), and may be in a final stage of its existence.  相似文献   

8.
Gaudi & Gould showed that close companions of remote binary systems can be efficiently detected by using gravitational microlensing via the deviations in the lensing light curves induced by the existence of the lens companions. In this paper, we introduce another channel to detect faint close-in binary companions by using microlensing. This method utilizes a caustic-crossing binary lens event with a source also composed of binary stars, where the companion is a faint star. Detection of the companion is possible because the flux of the companion can be highly amplified when it crosses the lens caustic. The detection is facilitated since the companion is more amplified than the primary because it, in general, has a smaller size than the primary, and thus experiences less finite source effect. The method is an extension of the previous one suggested to detect close-in giant planets by Graff & Gaudi and Lewis & Ibata and further developed by Ashton & Lewis. From the simulations of realistic Galactic bulge events, we find that companions of K-type main-sequence or brighter stars can be efficiently detected from the current type of microlensing follow-up observations by using the proposed method. We also find that compared with the method of detecting lens companions for which the efficiency drops significantly for binaries with separations ≲0.2 of the angular Einstein ring radius, θ E, the proposed method has an important advantage of being able to detect companions with substantially smaller separations down to ∼     .  相似文献   

9.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metallicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-infrared energy distribution of WD 1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be   T eff= 15 739+197−196 K  and  log  g = 8.46+0.03−0.02  . We set tight limits on the mass of a putative cool companion,   M ≳ 0.036 M  (spatially unresolved) and   M ≳ 0.034 M  (spatially resolved and   a ≲ 2500 au  ). Based on the predictions of CO core, thick H layer evolutionary models we determine the mass and cooling time of WD 1216+260 to be   M WD= 0.90 ± 0.04 M  and  τcool= 363+46−41 Myr  , respectively. For an adopted cluster age of  τ= 500 ± 100 Myr  we infer the mass of its progenitor star to be   M init= 4.77+5.37−0.97 M  . We briefly discuss this result in the context of the form of the stellar initial mass–final mass relation.  相似文献   

10.
Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be  9.2 ± 0.3 mas yr−1  . Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to calculate a peculiar velocity in the range 47–102 km s−1, with a best-fitting value of 64 km s−1. We consider possible explanations for the observed peculiar velocity and find that the black hole cannot have formed via direct collapse. A natal supernova is required, in which either significant mass  (∼11 M)  was lost, giving rise to a symmetric Blaauw kick of up to ∼65 km s−1, or, more probably, asymmetries in the supernova led to an additional kick out of the orbital plane of the binary system. In the case of a purely symmetric kick, the black hole must have been formed with a mass  ∼9 M  , since when it has accreted  0.5–1.5 M  from its companion.  相似文献   

11.
The amount of mass contained in low-mass objects is investigated anew. Instead of using a mass–luminosity relation to convert a luminosity function to a mass function, I predict the mass–luminosity relation from assumed mass functions and the luminosity functions of Jahreiss & Wielen and Gould, Bahcall & Flynn. Comparison of the resulting mass–luminosity relations with data for binary stars constrains the permissible mass functions. If the mass function is assumed to be a power law, the best-fitting slope lies either side of the critical slope, α =−2, below which the mass in low-mass objects is divergent, depending on the luminosity function adopted. If these power-law mass functions are truncated at 0.001 M, the contribution to the local density from stars lies between 0.013 and 0.10 M pc−3 depending on the mass at which the mass function is normalized and the adopted value of α . Recent dynamical estimates of the local mass density rule out stellar mass densities above ∼0.05 M pc−3. Hence, power laws steeper than α =−2 that extend down to 0.001 M are allowed only if one adopts an implausible normalization of the mass function. If the mass function is generalized from a power law to a low-order polynomial in log( M ), the mass in stars with M <0.1 M is either negligible or strongly divergent, depending on the order of the polynomial adopted.  相似文献   

12.
We consider the population of black widow pulsars (BWPs). The large majority of these are members of globular clusters. For minimum companion masses  ≲0.1 M  , adiabatic evolution and consequent mass loss under gravitational radiation appear to provide a coherent explanation of all observable properties. We suggest that the group of BWPs with minimum companion masses  ≳0.1 M  are systems relaxing to equilibrium after a relatively recent capture event. We point out that all binary millisecond pulsars (MSPs) with orbital periods   P ≲ 10  h are BWPs (our line of sight allows us to see the eclipses in 10 out of 16 cases). This implies that recycled MSPs emit either in a wide fan beam or a pencil beam close to the spin plane. Simple evolutionary ideas favour a fan beam.  相似文献   

13.
We present the results of a proper motion survey of the Hyades to search for brown dwarfs, based on UKIRT Deep Sky Survey (UKIDSS) and Two-Micron All Sky Survey (2MASS) data. This survey covers  ∼275 deg2  to a depth of   K ∼ 15  mag, equivalent to a mass of  ∼0.05 M  assuming a cluster age of 625 Myr. The discovery of 12 L dwarf Hyades members is reported. These members are also brown dwarfs, with masses between  0.05 < M < 0.075 M  . A high proportion of these L dwarfs appear to be photometric binaries.  相似文献   

14.
I have re-visited the spatial distribution of stars and high-mass brown dwarfs in the σ Orionis (σ Ori) cluster (∼3 Ma, ∼360 pc). The input was a catalogue of 340 cluster members and candidates at separations less than 30 arcmin to σ Ori AB. Of them, 70 per cent have features of extreme youth. I fitted the normalized cumulative number of objects counting from the cluster centre to several power-law, exponential and King radial distributions. The cluster seems to have two components: a dense core that extends from the centre to   r ≈  20 arcmin and a rarified halo at larger separations. The radial distribution in the core follows a power law proportional to r 1, which corresponds to a volume density proportional to   r −2  . This is consistent with the collapse of an isothermal spherical molecular cloud. The stars more massive than  3.7 M  concentrate, however, towards the cluster centre, where there is also an apparent deficit of very low mass objects  ( M < 0.16 M)  . Last, I demonstrated through Monte Carlo simulations that the cluster is azimuthally asymmetric, with a filamentary overdensity of objects that runs from the cluster centre to the Horsehead Nebula.  相似文献   

15.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

16.
We report on the results of a time-series photometric survey of M50 (NGC 2323), a  ∼130 Myr  open cluster, carried out using the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 812 candidate cluster members over the mass range  0.2 ≲ M /M≲ 1.1  . The rotation period distributions show a clear mass-dependent morphology, statistically indistinguishable from those in NGC 2516 and M35 taken from the literature. Due to the availability of data from three observing runs separated by ∼10 and 1 month time-scales, we are able to demonstrate clear evidence for evolution of the photometric amplitudes, and hence spot patterns, over the 10 month gap. We are not able to constrain the time-scales for these effects in detail due to limitations imposed by the large gaps in our sampling, which also prevent the use of the phase information.  相似文献   

17.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

18.
Voids are a dominant feature of the low-redshift galaxy distribution. Several recent surveys have found evidence for the existence of large-scale structure at high redshifts as well. We present analytic estimates of galaxy void sizes at redshifts   z ∼ 5–10  using the excursion set formalism. We find that recent narrow-band surveys at   z ∼ 5–6.5  should find voids with characteristic scales of roughly 20 comoving Mpc and maximum diameters approaching 40 Mpc. This is consistent with existing surveys, but a precise comparison is difficult because of the relatively small volumes probed so far. At   z ∼ 7–10  , we expect characteristic void scales of ∼14–20 comoving Mpc assuming that all galaxies within dark matter haloes more massive than  1010 M  are observable. We find that these characteristic scales are similar to the sizes of empty regions resulting from purely random fluctuations in the galaxy counts. As a result, true large-scale structure will be difficult to observe at   z ∼ 7–10  , unless galaxies in haloes with masses  ≲109 M  are visible. Galaxy surveys must be deep and only the largest voids will provide meaningful information. Our model provides a convenient picture for estimating the 'worst-case' effects of cosmic variance on high-redshift galaxy surveys with limited volumes.  相似文献   

19.
A by-product of the APM high-redshift quasar survey was the discovery of several distant (20–100 kpc) N-type carbon stars at high galactic latitude. Following on from this, we have started a systematic all-sky survey at galactic latitudes ⊢ b ⊢>30° to find further examples of these rare objects, and we report here on the results from the first season of follow-up spectroscopy. Faint, high-latitude carbon (FHLC) giants make excellent probes of the kinematic structure of the outer Galactic halo. Therefore, in addition to detailed spectrophotometry covering a wide wavelength range, we have obtained high-resolution (∼1 Å) spectra centred on the CN bands at ∼8000 Å, and have derived accurate (≲10 km s−1) radial velocities for the known FHLC stars. From the initial phase of our survey covering ≈6500 deg2, we find a surface density of faint N-type carbon stars in the halo of ≈1 per 200 deg2, roughly a factor of 4 less than the surface density of CH-type carbon stars in the halo. Intermediate-age, N-type carbon stars seem unlikely to have formed in the halo in isolation from other star-forming regions, and one possibility that we are investigating is that they either arise from the disruption of tidally captured dwarf satellite galaxies or are a manifestation of the long-sought optical component of the Magellanic Stream.  相似文献   

20.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号