首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘启明  陈晓非 《地震学报》2008,30(5):449-455
离散化网格的空间步长选取在各种数值算法中都是一个很受关注的问题,在全空间均匀介质模型和简单离散化方案下,利用边界积分方程方法研究在自发破裂求解过程中动力学参数组合Dc和Te (Dc为临界滑动弱化位移,Te为有效的断层破裂面上的初始应力)对计算网格划分的影响,初步得到了Dc和Te参数空间中的有效计算网格的选取规律,对合理、有效地运用边界积分方程方法计算地震震源的破裂过程具有重要的指导意义.   相似文献   

2.
The staggered grid finite-difference method is a powerful tool in seismology and is commonly used to study earthquake source dynamics. In the staggered grid finite-difference method stress and particle velocity components are calculated at different grid points, and a faulting problem is a mixed boundary problem, therefore different implementations of fault boundary conditions have been proposed. Viriuex and Madariaga (1982) chose the shear stress grid as the fault surface, however, this method has several problems: (1) Fault slip leakage outside the fault, and (2) the stress bump beyond the crack tip caused by S waves is not well resolved. Madariaga et al. (1998) solved the latter problem via thick fault implementation, but the former problem remains and causes a new issue; displacement discontinuity across the slip is not well modeled because of the artificial thickness of the fault. In the present study we improve the implementation of the fault boundary conditions in the staggered grid finite-difference method by using a fictitious surface to satisfy the fault boundary conditions. In our implementation, velocity (or displacement) grids are set on the fault plane, stress grids are shifted half grid spacing from the fault and stress on the fictitious surface in the rupture zone is given such that the interpolated stress on the fault is equal to the frictional stress. Within the area which does not rupture, stress on the fictitious surface is given a condition of no discontinuity of the velocity (or displacement). Fault normal displacement (or velocity) is given such that the normal stress on the fault is continuous across the fault. Artificial viscous damping is introduced on the fault to avoid vibration caused by onset of the slip. Our implementation has five advantages over previous versions: (1) No leakage of the slip prior to rupture and (2) a zero thickness fault, (3) stress on the fault is reliably calculated, (4) our implementation is suitable for the study of fault constitutive laws, as slip is defined as the difference between displacement on the plane of z = + 0 and that of z = − 0, and (5) cessation of slip is achieved correctly.  相似文献   

3.
In this paper, we examine the behavior of internal Kelvin waves on an f-plane in finite-difference models using the Arakawa C-grid. The dependence of Kelvin wave phase speed on offshore grid resolution and propagation direction relative to the numerical grid is illustrated by numerical experiments for three different geometries: (1) Kelvin wave propagating along a straight coastline; (2) Kelvin wave propagating at a 45° angle to the numerical grid along a stairstep coastline with stairstep size equal to the grid spacing; (3) Kelvin wave propagating at a 45° angle to the numerical grid along a coarse resolution stairstep coastline with stairstep size greater than the grid spacing. It can be shown theoretically that the phase speed of a Kelvin wave propagating along a straight coastline on an Arakawa C-grid is equal to the analytical inviscid wave speed and is not dependent on offshore grid resolution. However, we found that finite-difference models considerably underestimate the Kelvin wave phase speed when the wave is propagating at an angle to the grid and the grid spacing is comparable with the Rossby deformation radius. In this case, the phase speed converges toward the correct value only as grid spacing decreases well below the Rossby radius. A grid spacing of one-fifth the Rossby radius was required to produce results for the stairstep boundary case comparable with the straight coast case. This effect does not appear to depend on the resolution of the coastline, but rather on the direction of wave propagation relative to the grid. This behavior is important for modeling internal Kelvin waves in realistic geometries where the Rossby radius is often comparable with the grid spacing, and the waves propagate along irregular coastlines.©1998 Published by Elsevier Science Limited. All rights reserved  相似文献   

4.
A non-hydrostatic terrain-following model in cross sectional form is applied to study the processes in the lee of a sill in an idealized stratified fjord during super-critical tidal inflow. A sequence of numerical studies with horizontal grid sizes in the range from 100 to 1.5625 m are performed. All experiments are repeated using both hydrostatic and non-hydrostatic versions of the model, allowing a systematic study of possible non-hydrostatic pressure effects and also of the sensitivity of these effects to the horizontal grid size. The length scales and periods of the internal waves in the lee of the sill are gradually reduced and the amplitudes of these waves are increased as the grid size is reduced from 100 down to 12.5 m. With a further reduction in grid size, more short time and space scale motions become superimposed on the internal waves. Associated with the internal wave activity, there is a deeper separation point that is fairly robust to all parameters investigated. Another separation point nearer to the top of the sill appears in the numerical results from the high-resolution studies with the non-hydrostatic model. Associated with this shallower separation point, an overturning vortex appears in the same set of numerical solutions. This vortex grows in strength with reduced grid size in the non-hydrostatic experiments. The effects of the non-hydrostatic pressure on the velocity and temperature fields grow with reduced grid size. In the experiments with horizontal grid sizes equal to 100 or 50 m, the non-hydrostatic pressure effects are small. For smaller grid sizes, the time mean velocity and temperature fields are also clearly affected by the non-hydrostatic pressure adjustments.  相似文献   

5.
Griddispersioningeneratingfinite-differencessyntheticseismogramsAbdolrahimJavaherian(InstituteofGeophysics,theUniversityofTeh...  相似文献   

6.
瞬变电磁三维FDTD正演多分辨网格方法   总被引:1,自引:0,他引:1       下载免费PDF全文
瞬变电磁三维时域有限差分(FDTD)正演的网格剖分受最小网格尺寸、时间步长、边界条件、目标尺寸、模型尺寸等的影响,结构化网格一直存在最小网格尺寸受限于异常目标尺寸的矛盾;尽管非均匀网格能够在保证模型尺寸的前提下尽可能的降低网格数量,但由于Yee网格结构的限制,非均匀网格不能无限制的扩大单一方向的尺寸,这是为了避免边界网格区域出现长宽比过大的畸形网格,影响计算精度甚至导致结果发散.在非均匀网格剖分的基础上,本文提出了瞬变电磁三维FDTD正演的多尺度网格方法,即首先使用较大尺寸的粗网格进行第一次剖分,然后在希望加密的区域进行二次剖分,使计算域中包含粗、细两套网格.尽管细网格包含在粗网格内部,但其具有Yee网格的全部属性,因而可以在网格中设置不同的电性参数模拟不同形状的目标.基于Maxwell方程组推导了细网格内电场和磁场的迭代公式,基于泰勒展开给出了设置粗、细网格后产生的内部边界条件,使电磁场的传播在粗、细网格和时间步进上得到统一.采用均匀半空间中包含三维低阻异常的经典模型和三维接触带复杂模型进行精度验证,发现多分辨网格方法计算结果满足精度要求.使用"L"型异常模型计算采用多分辨网格方法和不采用多分辨网格的传统FDTD方法对比计算效率,发现多分辨网格算法能够显著提高计算效率,并能够保证计算精度.  相似文献   

7.
Rudi Hessel 《水文研究》2005,19(15):3037-3049
With increasing computer power, process‐based models that use grids to discretize space have become increasingly popular. For such models, the simulation results might depend on both grid cell size and, in the case of dynamic models, on the time step length used in the model. In this study, the dynamic Limburg soil erosion model (LISEM) was applied to a small catchment on the Chinese Loess Plateau. To study the effect of grid cell size and time step length, simulations were performed for grid cell sizes ranging from 5 to 100 m for a single time step length, and for time step lengths ranging from 2 to 120 s for a single grid cell size. The results show that the LISEM results vary considerably as a function of both grid cell size and time step length. For both increase in cell size and increasing time step length, the trend was a decrease in predicted discharge and predicted soil loss. For discharge, the most important causes are likely to be a decrease in slope with increasing grid cell size, rainfall averaging for longer time step lengths, and numerical dispersion of the kinematic wave solution. For soil loss, the cause is less clear, reflecting the complexity of soil loss prediction, which depends on available water, transport capacity and sediment redistribution, all of which change in time and space. These results show that a choice for a certain grid cell size and a certain time step length should be made before calibration of the model. Similar erosion models are likely to have similar dependencies on grid size and time step length. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Simulating ground water-lake interactions: approaches and insights   总被引:4,自引:0,他引:4  
Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAKI problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAKI problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAKI problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.  相似文献   

9.
BOOK REVIEWS     
Abstract

A distributed eco-hydrological model based on soil—vegetation—atmosphere transfer processes is applied to estimate actual evapotranspiration (ET) and gross primary production (GPP) over the Wuding River basin, Loess Plateau, China, based on digital elevation model, vegetation and soil information between 2000 and 2003 over three grid sizes: 250 m, 1 km and 8 km. The spatial patterns of annual ET and GPP are related to precipitation variability and land-use/cover conditions. The grid size is shown to affect the spatial patterns of annual ET and GPP, the effect on GPP being more significant than that on ET. Geostatistical and regression analyses demonstrate that precipitation and vegetation influence the scaling effect of ET and GPP in a complex way. When precipitation is high, the scaling effect of ET is more dependent on precipitation. The scaling effect of ET and GPP from 1-km to 8-km grid size is much larger than that from 250-m to 1-km grid size, showing the 1-km grid size to be a feasible choice for simulation of their spatial patterns. Although the annual GPP is more sensitive to the grid size than annual ET, both daily ET and daily GPP averaged over the whole basin seem to be insensitive to the grid size, illustrating that the coarse grid size can be used to simulate spatially-averaged variables without losing much accuracy.  相似文献   

10.
We examined seismic characteristics, b value and fractal dimension of the aftershock sequence of the January 26, 2001 Bhuj earthquake (Mw 7.7) that occurred in the Kutch failed rift basin, western margin of the Stable Continental Region (SCR) of India. A total of about 2,000 events (M?≥?2.0) were recorded within two and a half months, immediately after the main shock. Some 795 events were precisely relocated by simultaneous inversion. These relocated events are used for mapping the frequency-magnitude relation (b value) and fractal correlation dimension (Dc) to understand the seismic characteristics of the aftershocks and the source zone of the main shock. The surface maps of the b value and Dc reveal two distinct tectonic arms or zones of the V-shaped aftershock area, western zone and eastern zone. The b value is relatively higher (~1.6) in the western zone compared to a lower value (~1.4) in the eastern zone. The Dc map also shows a higher value (1.2–1.35) in the western zone compared to a lower Dc (0.80–1.15) in the eastern zone; this implies a positive correlation between Dc and b value. Two cross sections, E–W and N–S, are examined. The E–W sections show similar characteristics, higher b value and higher Dc in the western zone and lower in the eastern zone with depth. The N–S sections across the fault zones, however, show unique features; it imaged both the b and Dc characteristics convincingly to identify two known faults, the Kutch Mainland fault and the South Wagad fault (SWF), one stepping over the other with a seismogenic source zone at depth (20–35?km). The source zone at depth is imaged with a relatively lower b and higher Dc at the ‘fault end’ of the SWF showing a negative correlation. These observations, corroborated with the seismic tomography as well as with the proposed geological/tectonic model, shed a new light to our understanding on seismogenesis of the largest SCR earthquake in India in the recent years.  相似文献   

11.
空间格网数据相比于矢量数据具有运算速度快、处理简单的特点,适合地震灾害损失震前预测或震后快速评估。但地震损失评估涉及地震危险性及人口、房屋建筑及其地震易损性等不同类型数据在全国范围内的千米格网分布,数据量大,数据变化时形成新的格网数据的工作量较大,使用常规震害预测算法会影响评估效率。依据地震损失评估原理,采取前置确定性损失评估策略和算法优化,结合GIS功能设计并编程实现了具有风险评估相关数据千米格网化处理、地震损失预测与震后快速评估等核心功能的软件系统。利用该系统进行了2016~2025年中国大陆千米格网地震损失预测,结果表明评估效率显著提高,该系统为我国新一代地震重点监视防御区的确定提供了实用化的震害损失预测工具,同时,在地震损失快速评估中亦得到较好应用。  相似文献   

12.
This article presents a new approach for the implementation of a planar-free surface boundary condition. It is based on a vertical grid-size reduction above the free surface during the explicit computation of a free surface boundary condition. This technique is very much similar to the well-known stress imaging technique. VGR-stress imaging technique name is proposed for this new free surface boundary condition (VGR stands for ‘vertical grid-size reduction’). To study the performance of the proposed VGR-stress imaging technique, it was implemented in a newly developed second order accurate in time and fourth-order accurate in space (2, 4) staggered grid SH-wave finite-difference (FD) algorithm with variable grid size. It was confirmed that the effective thickness (ETH) of first soil layer becomes less by one-half of vertical grid size than the assigned thickness (ATH), if stress imaging technique is used as a free surface boundary condition. The qualitative and quantitative results of various numerical experiments revealed that the proposed VGR-stress imaging technique is better than the stress imaging technique since it is free from the thickness discrepancy arising due to the use of images of stress components across the free surface. On the basis of iterative numerical experiments, it was confirmed that the stability condition for this FD scheme with variable grid size is It was also inferred that at least five to six grid points per shortest wavelength are required to avoid the grid dispersion. The maximum grid-spacing ratio up to 12.5 or even more did not affect the accuracy of (2,4) SH-wave algorithm. The obtained reduction of 10.46 and 5.38 folds in the requirement of computational memory and time for a particular basin-edge model, as compared with the homogeneous grid size, reflects the efficacy of the new FD algorithm.  相似文献   

13.
Specific catchment area (SCA) patterns are commonly computed on grids using flow direction algorithms that treat the flow as coming from a point source at the pixel centre. These algorithms are all ambiguous in the definition of the flow width to be associated with a pixel when computing the SCA. Different methods for computing the flow width have been suggested, without giving an objective reason. In the few cases where this issue has been specifically discussed, the flow width is derived from subjective analysis and incorrect conceptualizations. This paper evaluates alternative approaches for defining the flow width when computing SCA patterns using the D∞ and D8 algorithms, by comparing theoretical and computed SCA patterns on sloping planes, inward and outward cones. Two new methods of defining the flow width are also analysed for both the D∞ and D8 algorithms. The performances of the different methods are discussed in relation to two dimensionless parameters: (1) the global resolution, defined as the ratio of a characteristic length of the study area to the grid size and (2) the upslope area resolution, defined as the ratio of the theoretical SCA to the grid size. The optimal methods are identified by specific threshold values of these dimensionless parameters. We conclude that assuming the flow width invariant and equal to the grid size is generally the best approach in most practical circumstances, both for the D∞ and D8 algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Zhang J  Randall G  Wei X 《Ground water》2012,50(3):464-471
In solving groundwater transport problems with numerical models, the computation time (CPU processing time) of transport simulation is approximately inversely proportional to the transport time-step size. Therefore, large time-step sizes are favorable for achieving short computation time. However, transport time-step size must be sufficiently small to avoid numerical instability if an explicit scheme is used (and to guarantee enough model accuracy if an implicit scheme is used). For a transport model involving groundwater pumping, a small transport time-step size is often required due to the high groundwater velocities near the pumping well. Small grid spacing often specified near the pumping well also limits the time-step size. This paper presents a method to increase transport time-step size in a transport model when groundwater pumping is simulated. The key to this approach is to numerically decrease the groundwater seepage velocities in grid cells near the pumping well by increasing the effective porosity so that the transport time-step size can be increased without violating stability constraints. Numerical tests reveal that by using the proposed method, the computation time of transport simulation can be reduced significantly, while the transport simulation results change very little.  相似文献   

16.
Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami   总被引:8,自引:0,他引:8  
Numerical computations of tsunamis are made for the 1992 Nicaragua earthquake using different governing equations, bottom frictional values and bathymetry data. The results are compared with each other as well as with the observations, both tide gauge records and runup heights. Comparison of the observed and computed tsunami waveforms indicates that the use of detailed bathymetry data with a small grid size is more effective than to include nonlinear terms in tsunami computation. Linear computation overestimates the amplitude for the later phase than the first arrival, particularly when the amplitude becomes large. The computed amplitudes along the coast from nonlinear computation are much smaller than the observed tsunami runup heights; the average ratio, or the amplification factor, is estimated to be 3 in the present case when the grid size of 1 minute is used. The factor however may depend on the grid size for the computation.  相似文献   

17.
以华北地区1980——2010年资料为例,以单位边长的网格覆盖研究区,考察中小地震空间分布非空网格数的变化.网格尺度足够小则非空网格数趋于该时段的地震数,网格尺度足够大则非空网格数为1.实际资料显示,当空间网格尺寸大于0.5deg;之后,对结果稳定性的影响逐渐减弱.中小地震空间分布非空网格数的变化与ldquo;背景rdquo;地震活动的空间扩展(增强)或收缩(平静)有关.不同网格尺寸条件下的非空网格数有基本一致的变化趋势,可能间接反映了区域应力的短时扰动或起伏.小地震有更高的丛集特性,随着震级下限的提高,不同网格尺寸非空网格数之间差异逐渐变小.华北地区小震活动非空网格数的频次分布符合统计正态分布,因而给定置信概率、依据正态分布密度函数可计算非空网格数的ldquo;正常rdquo;分布范围,超出此范围的数据可视为异常.统计显示,就华北地区而言,中小地震非空网格数ldquo;平静rdquo;型异常的预测效率最低,ldquo;增强rdquo;型异常具有最高的报警对应率,而同时考虑ldquo;增强rdquo;及ldquo;平静rdquo;的异常判据则具有最高的预报评分.这也意味着,华北中强地震前以ldquo;增强rdquo;型的中小地震活动异常为主.研究结果还显示,小地震时空活动格局的改变与后续中强地震似乎具有更强的统计关联特性.   相似文献   

18.
First results are presented from a 3-D, time dependent, high resolution, nested grid model that has been developed to study mesoscale processes in the global, coupled thermosphere–ionosphere system. This new Thermosphere–Ionosphere Nested Grid (TING) model, which is an extension of the National Center for Atmospheric Researchs thermosphere–ionosphere general circulation model (NCAR–TIGCM), runs on a UNIX workstation. The TING model simultaneously calculates global (coarse resolution) and local (high resolution) distributions of neutral and plasma winds, temperature and composition. It is comprised of two coupled codes—a global TIGCM and an adjustable nested grid code which uses the same solvers as the TIGCM, but has higher spatial and temporal resolution. The size, location and level of nesting of the high resolution grid(s) are adjustable to suit the specific application. The coupling between the coarse (TIGCM) grid and the nested interior grids is via a one-way interaction scheme. In this scheme, the TIGCM output influences the nested grid model by providing initial conditions and temporally evolving boundary conditions, but the outputs from the nested grid are not permitted to influence the TIGCM. Diurnally-reproducible results of the TING model are presented for solar-maximum, winter solstice, geomagnetically-quiet conditions. The TING model successfully simulates well-known thermosphere–ionosphere features that are smeared or not modeled at the spatial resolutions used in standard TIGCMs. These include the sub-auroral electron density trough, the polar cap hole and the polar cap tongue of ionization.  相似文献   

19.
Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth.  相似文献   

20.
深度均匀采样梯形网格有限差分地震波场模拟方法   总被引:1,自引:0,他引:1       下载免费PDF全文
由于重力引起的岩石压实效应,一般来说,地震波传播速度由浅入深整体逐渐增大.梯形坐标系设计可耦合速度由浅入深逐渐增大的变化,该坐标系中均匀网格采样所对应的物理直角坐标系网格由浅入深逐渐增大,也即浅部低速区对应细网格,深部高速区对应粗网格.在梯形坐标系表征波动方程后利用有限差分求解,本文实现一种深度均匀采样、横向采样间隔随深度增加逐渐线性增大的有限差分地震波模拟方法.梯形坐标系波动方程离散后,仍采用常规均匀网格有限差分算法对其求解.由于横向网格大小由浅入深线性增加,本方法可避免不同大小网格区域过渡所产生的虚假反射.梯形坐标系波场模拟浅层精度高,深层横向响应范围广,可有效减少有限差分网格数量.本文提出的方法是在更广义的坐标系下利用有限差分求解波动方程,正交坐标系仅为该梯形坐标系之特例.本文旨在为大速度动态范围深地高效高精度地震波场模拟提供一种思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号