首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 In order to characterize the hydraulic properties of an aquifer in Finland comprising two subvertical fracture zones, observation-well responses were matched with generalized radial flow (GRF) type curves. The responses in six wells out of seven are consistent with the GRF model. The fractional flow dimensions (1–1.2 and 1.5) were determined by regression analysis of straight-line slopes and type-curve matching. In each test, the flow dimensions in the neighboring fracture zone range from 2–2.25. Comparisons of the late-time responses with the asymptotic GRF solution and the flow dimensions obtained by reversing the pumping and observation points suggest homogeneous hydraulic properties. Deviations in responses can be explained by flow-path tortuosity. After assessments of the extent of the flow and radial distances along the fracture system, hydraulic conductivities and storativities were determined from the results of the type-curve matching procedure. The obtained hydraulic conductivities are 1.3×10–5 to 7.9×10–5 m/s and 5.0×10–6 to 2.5×10–5 m/s for the western and the eastern fracture zones, respectively. The results were verified by applying them to analytical solutions for pumping wells. The calculated pumping-well responses are consistent with the observations. The analysis of flow dimension also enhances qualitative interpretations on the hydrogeology of fracture zones. Received, April 1997 · Revised, September 1997 · Accepted, May 1998  相似文献   

2.
Isotope measurements (18O, D, 3H) indicate groundwater origin in the Lower Colorado River Valley (LCRV) and provide an alternative, or supplement, to the US Bureau of Reclamations proposed accounting surface method. The accounting surface method uses a hydraulic criterion to identify certain wells away from the flood plain that will eventually yield mainstream Colorado River water. New isotope data for 5 surface-water and 18 groundwater sites around Topock Marsh, Arizona, are compared with river-water data (1974–2002) from 11 sites between Utah and Mexico and with groundwater data from previous LCRV studies. Three groundwater sources are repeatedly identified in the LCRV: (1) local recharge derived from precipitation, usually winter rain, plots slightly below the global meteoric water line (GMWL) and has D values that are 20 greater than those of recent river water; (2) older (pre-1950) upper basin river-water plots on or near the GMWL, distinct from local rainfall and recent river water; and (3) recent (post-1950) Colorado River water, including Topock Marsh samples, plots below the GMWL along an evaporation trend. Large floods, as in 1983, complicate interpretation by routing less evaporated upper basin water into the LCRV; however, tritium content can indicate the age of a water. River-water tritium has declined steadily from its peak of 716 TU in 1967 to about 11 TU in 2002. Mixtures of all three groundwater sources are common.
Resumen Mediciones isotópicas (18O, D, 3H) indican cual es el origen del agua subterránea en el Valle Bajo del Río Colorado (LCRV) y aportan una alternativa, o complemento, para el método superficie de conteo propuesto por el Buró de Reclamación de Estados Unidos. El método superficie de conteo utiliza un criterio hidráulico para identificar ciertos pozos alejados de la planicie de inundación que eventualmente producirán agua a partir de la corriente principal del Río Colorado. Los nuevos datos isotópicos para 18 sitios de agua subterránea y 5 sitios de agua superficial cerca de los Pantanos Topock, Arizona, se comparan con datos de agua de río (1974–2002) provenientes de 11 sitios localizados entre Utah y México, y con datos de aguas subterráneas de estudios previos realizados en el LCRV. Se identifican reiteradamente tres fuentes de aguas subterráneas en el LCRV: (1) recarga local derivada de precipitación, generalmente lluvia de invierno, cuya composición cae ligeramente por debajo de la línea de agua meteórica global (GMWL) y tiene valores D que son 20 mayores que los reportados para agua de río reciente; (2) el agua de río más vieja (pre-1950) de la cuenca alta cuya composición cae sobre o cerca de la GMWL, diferente de la lluvia local y del agua de río reciente; (3) agua reciente (post-1950) del Río Colorado, incluyendo muestras de los Pantanos Topock, con composición por debajo de la GMWL a lo largo de una tendencia a la evaporación. Inundaciones grandes, como en 1983, complican la interpretación al transmitir menos agua evaporada de la cuenca alta hacia el LCRV; sin embargo, el contenido de tritio puede indicar la edad del agua. El contenido de tritio en agua de río ha disminuido constantemente desde la concentración pico de 716 TU en 1967 a cerca de 11 TU en 2002. Es común que exista mezclas de las tres fuentes de agua subterránea.

Résumé Les mesures isotopiques (d18O, dD, 3H) indiquent les origine de leaux souterraines dans la Vallée de la Rivière du Bas Colorado (LCRV) et sont une alternative, ou un supplément, à la méthode des bilans hydrologiques proposée par du «US Bureau of Reclamation». Cette méthode de bilan hydrologique utilise un critère hydraulique permettant didentifier certains puits hors de la plaine dinondation qui pomperaient une part non négligeable de leur eau dans la rivière Colorado. De nouvelles données isotopiques provenant de 5 sites deau de surface et 18 deaux souterraines autour de Topock Marsh en Arizona, sont comparées avec les données (1974–2000) de 11 sites localisés entre Utah et Mexico, ainsi que des données dautres études sur la LCRV. Ces sources deaux souterraines sont identifiées à plusieurs reprises dans la LCRV: (1) la recharge locale dérivant des précipitations, généralement les pluies hivernales, se retrouvent légèrement sous la ligne deau météoritique globale (GMWL) et possède des valeurs de dD 20% supérieures aux valeurs des eaux récentes de la rivière; (2) les eaux vieilles (pre-1950) du bassin supérieur de la rivière possèdent une valeurs très proches de la GMWL, distinctes des valeurs de la pluie locale et des eaux récentes de la rivière; et (3) les eaux récentes (post-1950) de la Rivière Colorado, incluant les échantillons de Topock Marsh, se positionnent à côté de la GMWL sur une droite dévaporation. Les grandes inondations, par exemple celle de 1983, compliquent linterprétation en reprenant dans la LCRV moins deaux marquées comme évaporées et provenant du bassin supérieur; par ailleurs le pic de tritium est descendu de 716 TU en 1967 à 11 TU en 2002. Les mélanges de ces trois sources sont assez fréquentes.
  相似文献   

3.
Doklady Earth Sciences - An isotope–geochemical study was performed on the waters of Abrosimov and Stepovoi bays along the southeastern coasts of the Novaya Zemlya Archipelago. The waters...  相似文献   

4.
The characteristics of δD and δ18O in precipitation, groundwater and surface water have been used to understand the groundwater flow system in the Ordos Plateau, north-central China. The slope of the local meteoric water line (LMWL) is smaller than that of the global meteoric water line (GMWL), which signifies secondary evaporation during rainfall. The distribution of stable isotopes of precipitation is influenced by temperature and the amount of precipitation. The lake water is enriched isotopically due to evaporation and its isotopic composition is closely related to the source of recharge and location in the groundwater flow systems. River water is enriched isotopically, indicating that it suffers evaporation. The deep groundwater (more than 150?m) is depleted in heavy isotopes relative to the shallow groundwater (less than 150?m), suggesting that deep groundwater may have been recharged during the late Pleistocene and early Holocene, when the climate was wetter and colder than at present. All groundwater samples plot around the LMWL, implying groundwater is of meteoric origin. Shallow groundwater has undergone evaporation and the average evaporation loss is 53%. There are two recharge mechanisms: preferential flow, and the mixture of evaporated soil moisture and subsequent rain.  相似文献   

5.
Doklady Earth Sciences - Multiproxy investigation of sediment core AF-0731 from the Mendeleev Rise revealed several epochs of high bioproductivity corresponding to climate amelioration and surface...  相似文献   

6.
Soils in the McMurdo Dry Valleys, Antarctica contain ice and considerable amounts of salt. Ice often occurs at shallow depth throughout the Dry Valleys and other areas of hyperarid permafrost, notably on Mars. This common occurrence of shallow ice is enigmatic; however, since according to published sublimation models it should disappear relatively quickly (at rates of order 0.1 mm a−1) due to vapor loss to the atmosphere. This loss may be offset by recharge from snowmelt infiltrating and freezing in the soil. Herein, we present a first quantitative estimate of this recharge based on measured vertical profiles of δD and δ18O that reveal considerable detail about the sources and sinks of ice. We model these profiles, taking into account the salt content and a soil temperature record along a 1.6 m depth profile of ∼10 ka old ice-cemented soils in Victoria Valley, Antarctica. The stable isotopes of ice are enriched in heavy isotopes at the top of the ice cement (20 cm depth); both δD and δ18O values plotted against depth exhibit a concave upward curve. At depth, the isotope composition is similar to that of Lake Victoria and modern meteoric water. The concave shape of the isotope profile is suggestive of downward advection-dispersion of snowmelt water enriched in heavy isotopes into the ice cement. Our advection-dispersion model, coupled with field data, enables us to quantify the advective flux and dispersion of melt water into the ice. The advective velocity and dispersion coefficient depend on the time since advection began and the ice-to-brine ratio; they are, respectively, of the order of 10−11-10−10 m s−1 and 10−12-10−11 m2 s−1. These values suggest that over the ∼10 ka time period, a total of 190 mm water infiltrated into the ice-cemented ground. The isotope composition and deuterium excess values of the uppermost ice cement can be modeled from snowmelt water enriched in salts using open system-Rayleigh fractionation. To develop the isotopic signature of the upper ice cement requires evaporation of ∼95% of the snowmelt water. Based on 190 mm brine infiltrating into the soil requires an initial total of ∼4 m of snowmelt water. This corresponds to ∼0.4 mm a−1 suggesting that, under the current climate condition, water from snowmelt is sufficient to compensate modeled sublimation rates, and therefore conserve ground ice in Victoria Valley.  相似文献   

7.
A detailed morphological, chemical and isotopic study of zircons from a single outcrop of two mineralogically and chemically distinct units of the late Precambrian Ponaganset gneiss was undertaken to investigate the effects of mylonitization and metamorphism on U-Pb isotopic systematics. Late Paleozoic, amphibolite-grade (approx. 600°C) mylonitization of the Ponaganset gneiss at this locality is associated with movement along the Hope Valley Shear Zone. The response of zircon to metamorphism in each gneiss unit is distinct: zircons in gray augen gneiss are uncorroded and not overgrown, whereas zircons from fluorite-bearing pink granitic gneiss are variably corroded and over 50% bear opaque overgrowths. The zircon overgrowths are chemically distinct from the primary cores, and contain high conentrations of Hf, U, HREE, and Th. Mylonite derived from the gray gneiss contains only a small population of Hf-U-rich metamorphic zircon, but zircons in the pink gneiss-derived mylonite are dominated by the Hf-U-rich metamorphic component. In terms of their U-Pb isotopic systematics, overgrowth-free zircons from both units are markedly discordant (gray, 10–20%, pink, 35%), but overgrown zircons from the pink gneiss are up to 70% discordant. Zircons from the mylonites yield younger Pb–Pb and U–Pb ages than those of the protolith gneisses, and isotopic data from each gneiss + mylonite pair define a linear array on concordia plots. Upper intercept ages of the gray gneiss (621+/–27 Ma) and the pink gneiss (635+/–50 Ma) indicate that the crystallization of both units was coeval, and the lower intercept ages (gray, 270+/–92 Ma; pink, 285+/–26 Ma) fall within the range of other published age estimates for Alleghanian metamorphism in southeastern New England (e.g., Zartman et al. 1988). New growth of zircon suggests that Zr was mobile during metamorphism. The presence of fluorite in the pink gneiss, and a discontinuity in log values obtained from biotite across the pink gneiss-gray gneiss contact indicates that dissolution and reprecipitation of zircon may be related to local variations in HF fugacity. Zircon dissolution/reprecipitation in the pink gneiss, and the lack of similar features in the contiguous gray gneiss, suggests that the degree of isotopic perturbation of zircon during metamorphism is related to bulk chemistry, fluid chemistry and/or the degree of fluid-rock interaction.  相似文献   

8.
The fluid composition, δD of channel H2O, and δ18O of lattice oxygen have been determined in beryl and emerald from a variety of geological environments and used to constrain the origin of the parental fluids from which beryl has grown. Step-heating analyses performed by quadrupolar mass spectrometry were used to quantify the composition of the fluid phases in beryl from granitic pegmatites and greisens and emerald from Brazil, Colombia, and Afghanistan. An important conclusion is that beryl and emerald have a similar fluid composition, with concentrations of H2O being greater than 90% of the total water in the mineral irrespective of the age of formation (2.0 Ga to 32 Ma) and tectonic settings. However, the Brazilian Santa Terezinha shear-zone emerald deposit contains abundant CO2, up to 13 wt% of the total fluid. A second conclusion is that the channel H2O content for some Brazilian emeralds is higher than the range defined for beryl in the literature, especially for those related to the shear-zone type (2.99 lt; H2O < 3.16 wt%) and the pegmatite type from the Pombos, Pela Ema, and Pirenopolis deposits (2.78 < H2O < 3.01 wt%). Colombian emeralds have very low H2O contents (1.30 < H2O < 1.96 wt%), among the lowest in the world.

Brazilian, Colombian, and Afghanistani emeralds have contrasting and restricted ranges of δ18O values. In Brazil, emeralds related to pegmatites have a systematic δ18O inter-deposit variability (+6.3 < δ18O < +12.4‰). The calculated δ18O of the fluid was buffered by the host ultrabasic rocks during fluid-rock interaction. Emerald and cogenetic phlogopite related to shear-zone-type deposits have a quite restricted δ18O range (+12.0 < δ18O 7lt; +12.4‰); the calculated is interpreted to represent the original isotopic composition of the hydrothermal fluid. Relative to Brazil, the δ18O of Colombian and Afghanistani emeralds shows strong enrichment in 18O (+13.4 < δ18O < +23.6‰), and the high calculated δ18O of the fluid suggests extensive reaction with 18O-rich sedimentary or metasedimentary rocks.

In Brazil, the δD composition of channels in emerald and the calculated δ18OH2O for phlogopite are compatible with both magmatic and metamorphic origins. A magmatic origin is supported for emeralds associated with the pegmatitic Socotó and Carnaiba deposits (mean δD = ?37.8 ± 8‰) and a metamorphic origin is suggested for the Santa Terezinha shear-zone type (mean δD = ?32.4 ± 3‰). A metamorphic origin is proposed for Colombian emeralds. Afghanistani emeralds have a δD composition of channels (mean δD = ?46.3 ± 1.3‰) that is compatible with both magmatic and metamorphic origins.  相似文献   

9.
10.
《Applied Geochemistry》2001,16(4):475-488
The usefulness of stable isotopes of dissolved SO434S and δ18O) to study recharge processes and to identify areas of significant inter-aquifer mixing was evaluated in a large, semi-arid groundwater basin in south-eastern Australia (the Murray Basin). The distinct isotopic signatures in the oxidizing unconfined Murray Group Aquifer and the deeper reducing Renmark Group confined aquifer may be more sensitive than conventional chemical tracers in establishing aquifer connections. δ34S values in the unconfined Murray Group Aquifer in the south and central part of the study area decrease along the hydraulic gradient from 20.8 to 0.3‰. The concomitant increasing SO4/Cl ratios, as well as relatively low δ18OSO4 values, suggest that vertical input of biogenically derived SO4 via diffuse recharge is the predominant source of dissolved SO4 to the aquifer. Further along the hydraulic gradient towards the discharge area near the River Murray, δ34S values in the unconfined Murray Group Aquifer increase, and SO4/Cl ratios decrease, due to upward leakage of waters from the confined Renmark Group Aquifer which has a distinctly low SO4/Cl and high δ34S (14.9–56.4‰). Relatively positive δ34S and δ18OSO4 values, and low SO4/Cl in the Renmark Group Aquifer is typical of SO4 removal by bacterial reduction. The S isotope fractionation between SO4 and HS of ∼24‰ estimated for the confined aquifer is similar to the experimentally determined chemical fractionation factor for the reduction process but much lower than the equilibrium fractionation (∼70‰) even though the confined groundwater residence time is >300 Ka years. Mapping the spatial distribution of δ34S and SO4/Cl of the unconfined Murray Group Aquifer provides an indicative tool for identifying the approximate extent of mixing, however the poorly defined end-member isotopic signatures precludes quantitative estimates of mixing fractions.  相似文献   

11.
12.
13.
《Applied Geochemistry》2001,16(9-10):1269-1284
Chemistry of major and minor elements, 87Sr/86Sr, δD, and δ18O of oilfield waters, and 87Sr/86Sr of whole rock were measured from Paleozoic strata in the Central Tarim basin, NW China. The aim is to elucidate the origin and migration of formation water and its relation to petroleum migration. High salinity oilfield waters in Carboniferous, Silurian and Ordovician reservoirs have maintained the same Na/Cl ratio as seawater, indicative of subaerially evaporated seawater. Two possible sources of evaporitic water are Carboniferous (CII) and Cambrian, both of which contain evaporitic sediments. Geographic and stratigraphic trends in water chemistry suggest that most of the high salinity water is from the Cambrian. Strontium, H and O isotopes as well as ion chemistry indicate at least 3 end member waters in the basin. High-salinity Cambrian evaporitic water was expelled upward into Ordovician, Silurian and Carboniferous reservoirs along faults and fractures during compaction and burial. Meteoric water has likely invaded the section throughout its history as uplift created subaerial unconformities. Meteoric water certainly infiltrated Silurian and older strata during development of the CIII unconformity and again in recent times. Modern meteoric water enters Carboniferous strata from the west and flows eastward, mixing with the high salinity Cambrian water and to a lesser degree with paleometeoric water. The third end member is highly radiogenic, shale-derived water which has migrated eastward from the Awati Depression to the west. Enrichment of Ca and Sr and depletion of K, Mg, and SO4 relative to the seawater evaporation trajectory suggest waters were affected by albitization of feldspars, dolomitization, illitization of smectite, and SO4 reduction. The mixing of meteoric water occurred subsequently to seawater evaporation, main water-rock interactions, and brine migration. The direction of brine migration is consistent with that of petroleum migration, suggesting water and petroleum have followed the same migration pathways.  相似文献   

14.
15.
《Applied Geochemistry》2001,16(6):633-649
Water inflows in the Gotthard Highway Tunnel and in the Gotthard Exploration Tunnel are meteoric waters infiltrating at different elevations, on both sides of an important orographic divide. Limited interaction of meteoric waters with gneissic rocks produces Ca–HCO3 and Na–Ca–HCO3 waters, whereas prolonged interaction of meteoric waters with the same rocks generates Na–HCO3 to Na–SO4 waters. Waters circulating in Triassic carbonate-evaporite rocks have a Ca–SO4 composition. Calcium-Na–SO4 waters are also present. They can be produced through interaction of either Na–HCO3 waters with anhydrite or Ca–SO4 waters with a local gneissic rock, as suggested by reaction path modeling. An analogous simulation indicates that Na–HCO3 waters are generated through interaction of Ca–HCO3 waters with a local gneissic rock. The two main SO4-sources present in the Alps are leaching of upper Triassic sulfate minerals and oxidative dissolution of sulfide minerals of crystalline rocks. Values of δ34SSO4 < ∼+9‰ are due to oxidative dissolution of sulfide minerals, whereas δ34SSO4 >∼+9‰ are controlled either by bacterial SO4 reduction or leaching of upper Triassic sulfate minerals. Most waters have temperatures similar to the expected values for a geothermal gradient of 22°C/km and are close to thermal equilibrium with rocks. However relatively large, descending flows of cold waters and ascending flows of warm waters are present in both tunnels and determine substantial cooling and heating, respectively, of the interacting rocks. The most import upflow zone of warm, Na-rich waters is below Guspisbach, in the Gotthard Highway Tunnel, at 6.2–9.0 km from the southern portal. These warm waters have equilibrium temperatures of 65–75°C and therefore constitute an important low-enthalpy geothermal resource.  相似文献   

16.
A 30 ka paleo-climate record of the Boise area, Idaho, USA has been delineated using groundwater stable isotopic compositions. Groundwater ages are modern (cold batholith), 5-15 ka (thermal batholith) , 10-20 ka (frontal fault) , and 20-30 ka (Snake River plain thermal). The stable isotopic composition of groundwaters have been used as a surrogate for the stable isotopic composition of precipitation. Using δ2H and δ18O compositions, local groundwater lines (LGWL's) were defined for each system. Each LGWL has been evaluated with defined slopes of 6.94 and 8, respectively, and resulting deuterium excess values (d) were found for each groundwater system for each slope. Time dependent changes in moisture source humidity and temperature, and Boise area recharge temperatures, calculated from stable isotopic data and the deuterium excess factors, agree with previous paleo-climate studies. Results indicate that from the last glacial maximum to the present time the humidity over the ocean moisture source increased by 9%, sea surface temperature at the moisture source increased 6-7°C, and local Boise temperature increased by 4-5°C. A greater increase of temperature at the moisture source as compared to the Boise area may impart be due to a shift in the moisture source area.  相似文献   

17.
The oxygen and carbon isotopic composition of surficial carbonates is a key technique for reconstructing past environments and climates. The understanding of modern isotopic systems is, however, a vital first step before applying these techniques to fossil examples. In this study the δ18O of aragonite shells from three different freshwater mollusc species and the δ18O of tufa stromatalites are analysed and compared to the modern temperature and isotopic regime of the river system in which they form (the river Gipping, Sproughton, southeast England). In all cases this range of carbonates appear to form in isotopic equilibrium with the δ18O of modern waters at water temperatures experienced during the summer months. It is, therefore, likely that in Quaternary interglacial deposits of the UK and western Europe the δ18O of fossil freshwater molluscs and tufa stromatolite carbonates will provide an indication of past summer temperature regimes and not mean annual temperatures, as has been previously suggested. The paper concludes by discussing the implications of this study for the isotopic analysis of interglacial deposits in Britain and western Europe.  相似文献   

18.
19.
A 7-cm long aragonite stalagmite, FR0510-1, from Furong Cave, Chongqing, was dated by 210Pb and 230Th methods, revealing a-2000-year record of climate history under the influence of the East Asian Monsoon. The FR0510-1 record resembles Dongge Cave DA record on 10–100-year scales, but quite different from the Wanxiang Cave WX42B record, indicating that while stalagmite δ18O record represents local/regional moisture change, spatial variability of the monsoonal rainfall over eastern China must take into account. During the past 2000 years, climate in Chongqing was relatively wet in the intervals of 50 BC–AD 250, AD 1150–1450 and AD 1600–1950, and relatively dry during the periods of AD 250–1150 and AD 1450–1600. Dry conditions were prevailing over the Medieval Warm Period, whereas wet climates were dominant during the most time of the Little Ice Age in Chongqing area.  相似文献   

20.
Lithology and Mineral Resources - The Ushkatyn-III deposit is located 300 km west of Karaganda (Central Kazakhstan). It is classified as a weakly metamorphosed Atasu-type hydrothermal-sedimentary...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号