首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C.R. O&#x;Dell 《Icarus》1973,19(1):137-146
A new model for the nucleus of comets is presented, hypothesizing formation at large heliocentric distances from many independent solid bodies. It is shown that such a configuration would collapse to a single assemblage if it is to survive into the inner solar system. Prior to collapse, the bodies would be subject to coating by interstellar gas and particles, which would form the material lost into the coma at subsequent inner solar system perihelia. Quantitative estimates place an upper limit to the body sizes of 2.3m and a lower limit of the number as 3 × 101° with sizes of a few tenths of a micron and numbers of about 1033 most probable. The major structural and evolutionary features of such comet nuclei are consistent with the Whipple icy-conglomerate model.  相似文献   

2.
The ionosphere of Jupiter's satellite Io, discovered by the Pioneer 10 radio-occultation experiment, cannot easily be understood in terms of a model of a gravitationally bound, Earth-like ionosphere. Io's gravitational field is so weak that a gravitationally bound ionosphere would probably be blown away by the ram force of the Jovian magnetospheric wind — i.e., the plasma corotating in the Jovian magnetosphere. We propose here a model in which the material for Io's atmosphere and ionosphere is drawn from the ionosphere of Jupiter through a Birkeland current system that is driven by the potential induced across Io by the Jovian corotation electric field. We argue that the ionization near Io is caused by a comet-like interaction between the corotating plasma and Io's atmosphere. The initial interaction employs the critical velocity phenomenon proposed many years ago by Alfvén. Further ionization is produced by the impact of Jovian trapped energetic electrons, and the ionization thus created is swept out ahead of Io in its orbit. Thus, we suggest that what has been reported as a day-night ionospheric asymmetry is in fact an upstream-downstream asymmetry caused by the Jovian magnetospheric wind.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30th May, 1978.  相似文献   

3.
The variation of the dust temperature with heliocentric distance for a comet is calculated using the optical constants of an astronomically important silicate.  相似文献   

4.
A study of ground-based all-sky photographs substantiates the presence of the diffuse auroral belt as seen by the ISIS-2 (polar orbiting satellite) scanning auroral photometer. The intensity of the diffuse aurora increases when discrete auroras become active; in particular the diffuse aurora is most clearly seen equatorward of westward travelling surges. However, in the morning sector, it may or may not be detectable near eastward drifting patches in all-sky photographs. Some of what has been previously identified visually and in all-sky photographs as the proton aurora probably is a part of what we identify here as the diffuse aurora.The diffuse aurora appears sometimes to branch out into two, one along the auroral oval and the other along a constant geomagnetic latitude circle. The latter probably corresponds to the mantle aurora and the drizzle zone precipitation.  相似文献   

5.
Gerhard Hahn  Hans Rickman 《Icarus》1985,61(3):417-442
Orbital integrations are presented for a total of 14 asteroids with perihelia inside 1.7 AU and with aphelion distances in excess of 4 AU, 10 of which were discovered in 1979–1984. The integrations were normally extended over approximately ±1000 years in a three-body model (Sun-Jupiter-asteroid). The effects of uncertainties of starting orbits are not treated in this work, and as far as the real asteroids are concerned, the results should be regarded mostly as preliminary indications. A wide variety of orbital evolutions is found, and some of them evidently belong to the cometary, chaotic type. Three such cases are identified with certainty (1983 SA, 1983 XF, and 1984 BC) and two or three more with various degrees of likelihood. An asteroidal motion is found for the well-observed object 1979 VA. A stable libration around the 21 resonance is found for 1981 FD, which obviously adds to the Griqua group. A long-lasting libration around the 53 resonance performed by 1982 YA is probably unstable. Temporary librations are also found for 1983 SA (43 resonance) and 1983 XF (21 resonance), but these objects appear to transit into irregular motions with close approaches to Jupiter (less than 0.01 AU for 1983 XF). A very rapid large-amplitude ω libration around 90° is found in the future motion of 1983 VA. If this will indeed occur for the real asteroid, the object will oscillate with a period of only 750 years between a main-belt orbit of very high inclination and a low-inclination Apollo-type orbit.  相似文献   

6.
Considerations are summarized concerning the physical properties of and plasma phenomena around a cometary nucleus aiming at a new model of the nucleus and its interaction with the solar wind.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

7.
The temperature distributions in cometary atmospheres at various heliocentric distances for comets of Bennett and Encke types have been calculated by taking into account heating due to the absorption of solar ultraviolet radiation, cooling by H2O far infrared emission, and various dynamical processes (expansion, advection, and thermal conduction). The agreement of the results with the observations is in general satisfactory. The conversion of CH4 and NH3 to CO and N2 through thermochemical reaction with H2O is concluded to be impossible, since the temperature is too low at a heliocentric distance 1.5 AU where CO+ ions begin to be observable.  相似文献   

8.
O. Ashihara 《Icarus》1978,35(3):369-384
The photoelectron fluxes in cometary atmospheres are calculated by a Monte Carlo method. This is the first quantitative model calculation of this kind. A pure H2O atmosphere is assumed with a sublimation rate of 1030 molecules sec?1 at 1 AU. Discussions of the energetics of electron gas and of the elementary collisional processes in determining the fluxes largely concern this water atmosphere. Influences on the photoelectron fluxes are also investigated for CO, another possible constituent. The excitation rate of the 1D level of atomic oxygen in electron impacts is evaluated. It is highly improbable that the photoelectrons are responsible for the observed 6300 Å emission of the order of 1 kR at a heliocentric distance of 1 AU. The structure of the heat equation for thermal electrons is analyzed and a drastic change of the plasma behavior within the coma region is expected.  相似文献   

9.
A new approach is considered to the problem of ionization of the inner comas of comets connected with two phenomena: meteor-like process due to cometary molecules — interplanetary meteoroids impacts and explosion-type process due to high-velocity collisions between cometary dust grains and interplanetary meteoroids. It is found that the efficiency of explosive ionization exceeds the efficiency of meteor ionization approximately 100 times. The explosive ionization may be possible mechanism for anomaly ionization of the inner comae of dusty comets like Halley 1986 III with the dust to gas production rate ratio more than 0.1.  相似文献   

10.
《Icarus》1987,69(1):83-90
Assuming cometary nuclei composed of weakly attached cometesimals, thermal stresses due to the temperature differences between the surface and the core are calculated. Both homogeneous icy bodies and cometesimals with material inhomogeneities are considered. It is shown that spherical inclusions in water ice cause strong stresses. Even if viscoelastic effects are taken into account the stresses in the superficial regions exceed the strength of water ice and therefore cause cracks to form. The consequences of this for such irregular cometary activity as splitting and outbursts are discussed.  相似文献   

11.
The Bethe approximation is used with measured and theoretical values of ionization cross sections and measured values of differential oscillator strengths to derive the initial energy spectrum of auroral secondary electrons. The differential flux of the auroral secondaries is then calculated, using the approximation of continuous energy loss. The calculations are applied to a particular aurora for which rocket data have been published. There is substantial disagreement between theoretical and measured electron spectra. The theoretical spectra show structure at energies less than 20 eV, associated primarily with vibrational and electronic excitation of molecular nitrogen. This structure is largely absent in the measured spectrum. Substantially more high energy electrons were measured than theory predicts. In addition, there are disagreements in the altitude profiles of the total number of non-thermal secondary electrons.

Calculated values of OI green line photon emission rates which result from excitation by secondary electrons and dissociative recombination of O2+ fall short of the measured values. The effect on the excitation rate of varying several parameters is investigated, and it is found that the results are particularly sensitive to competing inelastic processes in N2.  相似文献   


12.
It is observed that in the course of at least one major magnetic storm, during aurorally quiet pauses, the poleward limit of auoral activity is shifted 10–15° equatorward of its typical non-storm-time limit. The storm-time ring current will contribute to the equatorward shift by expanding the size of the magnetosphere, causing an increase in the magnetic flux in the tail that maps into the aurorally inactive polar cap. We use a new model of the ring current to estimate the size of the ring current effect on the shift in the poleward limit. One calculated example that is probably representative gives a shift of between 5 and 10° corresponding to a Dst in the range from ?300 to ?600 nT.  相似文献   

13.
《Icarus》1987,69(2):314-328
A one-dimensional heat-diffusion model was used to calculate internal temperatures in cometary nuclei composed of either crystalline or amorphous ice, and for a range of orbits. It was found that the final central temperature, Tc, was a complex function of the comet's orbital semimajor axis, a, and eccentricity, e, as well as the functional form of the thermal conductivity. For cometary nuclei with identical thermal properties, Tc was found to decrease with eccentricity for a short-period orbit with a = 3 AU. For an intermediate-period orbit with a = 20 AU, Tc initially increased with eccentricity but then declined at large values of e for a crystalline ice nucleus, while for amorphous ice Tc increased monotonically. In addition, it was found that for conductivities of similar magnitude, crystalline ice (for which the conductivity varies inversely proportional to temperature) reached the final central temperature twice as fast as amorphouslike ice (for which the conductivity is proportional to temperature). Tc also depended on the magnitude of the conductivity. A four- to fivefold decrease in the conductivity resulted in a 3–4°K decrease in Tc at large eccentricities, while at small eccentricities Tc was only weakly dependent on the conductivity. Finally, the numerical results are compared to the analytical solutions of J. Klinger (1981, Icarus 47, 320–324) and C. P. McKay, S. W. Squyres, and R. T. Reynolds (1986, Icarus, 66, 625–629), and a numerical correction factor is derived for the McKay et al. expression for the central temperature.  相似文献   

14.
A numerical study of gas flow through a porous cometary mantle is presented. A kinetic model based on the well-known Test Particle Monte Carlo Method for the solution of rarefied gas dynamics problems is proposed. The physical model consists of two spatial plane regions: the condensed ice phase and a porous dust mantle. The structure of the porous dust layer is described as a bundle of cylindrical inclined channels not crossing each other. A vertical temperature gradient may exist across the dust mantle. The aim is to investigate how the characteristics of molecular flow depend on the capillary length, inclination angle, and temperature gradient. Examples illustrating a significant deviation of some results from equilibrium values are shown. In particular, the gas velocity distribution at both ends of the pore is strongly non-Maxwellian if there is an important temperature contrast across the pore. The emergent gas flow rate is found to vary with the pore length/radius ratio in excellent agreement with Clausing's empirical formula. The degree of collimation of the flow is quantitatively studied as a function of the length/radius ratio, and consequences for the jet force of outgassing through a dust mantle or, indeed, a rough surface are estimated.  相似文献   

15.
A new model of the sublimation of volatile ices from a cometary nucleus has been developed which includes the effects of diurnal heating and cooling, rotation period and pole orientation, and thermal properties of the ice and subsurface layers. The model also includes the contribution from coma opacity, scattering, and thermal emission, where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. The model is applied to the specific case of the 1986 apparition of Halley's comet. It is found that the generation of a cometary dust coma actually increases the total energy reaching the Halley nucleus. This results because of the significantly greater geometrical cross section of the coma as compared with the bare nucleus, and because the coma provides an essentially isotropic source of multiply scattered sunlight and thermal emission over the entire nucleus surface. For Halley, the calculated coma opacity is approximately 0.2 at 1 AU from the Sun, and 1.2 at perihelion (0.587 AU). At 1 AU this has little effect on dayside temperatures (maximum ≈200°K) but raises nightside temperatures (minimum ≈150°K) by about 40°K. At perihelion the higher opacity results in a nearly isothermal nucleus with only small diurnal and latitudinal temperature variations. The general surface temperature is 205°K with a maximum of 209°K at local noon on the equator. Some possible consequences of the results with respect to the generation of nongravitational forces, observed volatile production rates for comets, and cometary lifetimes against sublimation are discussed.  相似文献   

16.
Heating processes are expected to strongly affect the structure and dynamics of cometary comas. A radial expansion velocity of less than 1 km s–1 in the inner coma is quite compatible with a few km s–1 in the outer regions of large comets.  相似文献   

17.
Abstract— Recent developments in our understanding of comets provide insights into the topic of cometary meteorites. These developments include the identification of comet-asteroid transition objects (such as 4015 Wilson-Harrington and 3200 Phaethon), information on the composition of cometary solids, and new ideas on the collisional history of Jupiter-family comets. In this work, we revisit this question, and we conclude that comets do indeed yield macroscopic meteorites, which either have not been found or have not been recognized. We also consider the expected characteristics of cometary meteorites, with an emphasis on those that may help identify and differentiate them from other types of meteorites. If cometary meteorites have preserved the main characteristics of cometary dust, the mineralogy would be dominated by highly unequilibrated anhydrous silicates, and the chemistry would be nearly chondritic but with a high abundance of C and N. On the other hand, if an unknown process produced extensive aqueous alteration in the material that formed cometary meteorites, they would resemble (or could even be) CI carbonaceous chondrites. We do not expect cometary meteorites to have chondrules. So far, no single meteorite looks unequivocally cometary. However, we have identified xenoliths in ordinary chondrite regolith breccias that meet most of our criteria for a cometary origin and deserve further study.  相似文献   

18.
The distributions of various kinds of molecular ions in the atmospheres of new and old comets made up from dirty ice of the second kind (H2O ice and hydrate clathrates of CO and N2) have been computed at various heliocentric distances, by taking into account photoionization, ionmolecular reactions, electron-ion recombinations, and some transport effects. The results have been compared with observations and other computations. It is argued that dirty ice of the second kind model will impose a restriction on the theory of the origin of the solar system.  相似文献   

19.
If the structure of the magnetic field and electric current in the cometary type I tail can be represented by an electric current circuit, disruption of the cross-tail current system may lead to a current discharging through the cometary ionosphere, and the dissipation of the magnetic energy stored in the tail. From the point of view of energy budget, a tail-aligned magnetic field on the order of 10γ will be sufficient to produce a strong ionization effect of the cometary atmosphere.  相似文献   

20.
We present results from long-term numerical integrations of hypothetical Jupiter-family comets (JFCs) over time-scales in excess of the estimated cometary active lifetime. During inactive periods these bodies could be considered as 'cometary' near-Earth objects (NEOs) or 'cometary asteroids'. The contribution of cometary asteroids to the NEO population has important implications not only for understanding the origin of inner Solar system bodies but also for a correct assessment of the impact hazard presented to the Earth by small bodies throughout the Solar system. We investigate the transfer probabilities on to 'decoupled' subJovian orbits by both gravitational and non-gravitational mechanisms, and estimate the overall inactive cometary contribution to the NEO population. Considering gravitational mechanisms alone, more than 90 per cent of decoupled NEOs are likely to have their origin in the main asteroid belt. When non-gravitational forces are included, in a simple model, the rate of production of decoupled NEOs from JFC orbits becomes comparable to the estimated injection rate of fragments from the main belt. The Jupiter-family (non-decoupled) cometary asteroid population is estimated to be of the order of a few hundred to a few thousand bodies, depending on the assumed cometary active lifetime and the adopted source region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号