首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We selected a sample of 33 gamma-ray bursts detected by Swift , with known redshift and optical extinction at the host frame. For these, we constructed the de-absorbed and K -corrected X-ray and optical rest-frame light curves. These are modelled as the sum of two components: emission from the forward shock due to the interaction of a fireball with the circumburst medium and an additional component, treated in a completely phenomenological way. The latter can be identified, among other possibilities, as a 'late prompt' emission produced by a long-lived central engine with mechanisms similar to those responsible for the production of the 'standard' early prompt radiation. Apart from flares or re-brightenings, that we do not model, we find a good agreement with the data, despite of their complexity and diversity. Although based, in part, on a phenomenological model with a relatively large number of free parameters, we believe that our findings are a first step towards the construction of a more physical scenario. Our approach allows us to interpret the behaviour of the optical and X-ray afterglows in a coherent way, by a relatively simple scenario. Within this context, it is possible to explain why sometimes no jet break is observed; why, even if a jet break is observed, it is often chromatic and why the steepening after the jet break time is often shallower than predicted. Finally, the decay slope of the late prompt emission after the shallow phase is found to be remarkably similar to the time profile expected by the accretion rate of fall-back material (i.e.  ∝ t −5/3  ), suggesting that this can be the reason why the central engine can be active for a long time.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Gamma-ray bursts are often modelled as jet-like outflows directed towards the observer; the cone angle of the jet is then commonly inferred from the time at which there is a steepening in the power-law decay of the afterglow. We consider an alternative model in which the jet has a beam pattern where the luminosity per unit solid angle (and perhaps also the initial Lorentz factor) decreases smoothly away from the axis, rather than having a well-defined cone angle within which the flow is uniform. We show that the break in the afterglow light curve then occurs at a time that depends on the viewing angle. Instead of implying a range of intrinsically different jets – some very narrow, and others with a similar power spread over a wider cone – the data on afterglow breaks could be consistent with a standardized jet, viewed from different angles. We discuss the implication of this model for the luminosity function.  相似文献   

10.
Tail emission of the prompt gamma-ray burst (GRB) is discussed using a multiple emitting sub-shell (inhomogeneous jet, sub-jets or mini-jets) model, where the whole GRB jet consists of many emitting sub-shells. One may expect that such a jet with angular inhomogeneity should produce spiky tail emission. However, we found that the tail is not spiky but is decaying roughly monotonically. The global decay slope of the tail is not so much affected by the local angular inhomogeneity but affected by the global sub-shell energy distribution. The fact that steepening GRB tail breaks appeared in some events prefers the structured jets. If the angular size of the emitting sub-shell is around 0.01–0.02 rad, some bumps or fluctuations appear in the tail emission observed frequently in long GRBs. If the parameter differences of sub-shell properties are large, the tail has frequent changes of the temporal slope observed in a few bursts. Therefore, the multiple emitting sub-shell model has the advantage of explaining the small-scale structure in the observed rapid decay phase.  相似文献   

11.
Within the framework of the internal–external shocks model for γ -ray bursts, we study the various mechanisms that can give rise to quiescent times in the observed γ -ray light curves. In particular, we look for the signatures that can provide us with evidence as to whether or not the central engine goes dormant for a period of time comparable to the duration of the gaps. We show that the properties of the prompt γ -ray and X-ray emission can, in principle, determine whether the quiescent episodes are caused by a modulated relativistic wind or a switching off of the central engine. We suggest that detailed observations of the prompt afterglow emission from the reverse shock will strongly constrain the possible mechanisms for the production of quiescent times in γ -ray bursts.  相似文献   

12.
The variability of a gamma-ray burst (GRB) is thought to be correlated with its absolute peak luminosity, and this relation had been used to derive an estimate of the redshifts of GRBs. Recently, Amati et al. presented the results of spectral and energetic properties of several GRBs with known redshifts. Here, we analyse the properties of two groups of GRBs: one group with known redshift from afterglow observation and another group with redshift derived from the luminosity–variability relation. We study the redshift dependence of various GRBs features in their cosmological rest frames, including the burst duration, the isotropic luminosity and radiated energy, and the peak energy Ep of ν F ν spectra. We find that, for these two groups of GRBs, their properties are all redshift-dependent, i.e. their intrinsic duration, luminosity, radiated energy and peak energy Ep are all correlated with the redshift, which means that there are cosmological evolution effects on gamma-ray burst features, and this can provide an interesting clue to the nature of GRBs. If this is true, then the results also imply that the redshift derived from the luminosity–variability relation may be reliable.  相似文献   

13.
Whether gamma-ray bursts are highly beamed or not is a very important question, as it has been pointed out that the beaming will lead to a sharp break in the afterglow light curves during the ultrarelativistic phase, with the breaking point determined by  Γ∼1/ θ 0  , where Γ is the bulk Lorentz factor and θ 0 is the initial half opening angle of the ejecta, and such a break is claimed to be present in the light curves of some GRBs. In this paper we will examine whether all the observed breaks in GRB afterglow light curves can be explained by jet effects. Here we present a detailed calculation of the jet evolution and emission, and have obtained a simple formula of bulk Lorentz factor evolution. We show that the light curves are very smoothly steepened by jet effect, and the shape of the light curve is determined by only one parameter –     , where E and n are the fireball energy and surrounding medium density, respectively. We find that for GRB 990123 and GRB 991216, the jet model can approximately fit their light curves, and the values of     are about 0.17 and 0.22, respectively. On the other hand, the light curves of GRB 990510, GRB 000301c, GRB 000926 and GRB 010222 cannot be fitted by the jet model, which suggests that the breaks may be caused by some other reasons, and the jet effect should be not the unique reason.  相似文献   

14.
The discovery by Swift that a good fraction of gamma-ray bursts (GRBs) have a slowly decaying X-ray afterglow phase led to the suggestion that energy injection into the blast wave takes place several hundred seconds after the burst. This implies that right after the burst the kinetic energy of the blast wave was very low and in turn the efficiency of production of γ-rays during the burst was extremely high, rendering the internal shocks model unlikely. We re-examine the estimates of kinetic energy in GRB afterglows and show that the efficiency of converting the kinetic energy into γ-rays is moderate and does not challenge the standard internal shock model. We also examine several models, including in particular energy injection, suggested to interpret this slow decay phase. We show that with proper parameters, all these models give rise to a slow decline lasting several hours. However, even those models that fit all X-ray observations, and in particular the energy injection model, cannot account self-consistently for both the X-ray and the optical afterglows of well-monitored GRBs such as GRB 050319 and GRB 050401. We speculate about a possible alternative resolution of this puzzle.  相似文献   

15.
16.
17.
In the synchrotron radiation model, the polarization property depends on both the configuration of the magnetic field and the geometry of the visible emitting region. Some peculiar behaviours in the X-ray afterglows of gamma-ray bursts (GRBs) observed with Swift , such as energetic flares and a plateau followed by a sharp drop, might be highly linearly polarized because the outflows powering these behaviours may be dominated by Poynting flux. The breakdown of the symmetry of the visible emitting region may also be well hidden in the peculiar X-ray data and may give rise to interesting polarization signatures. In this paper, we focus on the polarization accompanying the very early sharp decline of GRB X-ray afterglows. We show that strong polarization evolution is possible in both the high latitude emission model and the dying central engine model, which are used to interpret this sharp X-ray decline. It is thus not easy to efficiently probe the physical origin of the very early X-ray sharp decline with future polarimetry. Strong polarization evolution is also possible in the decline phase of X-ray flares and in the shallow decline phase of X-ray light curves characterized by chromatic X-ray versus optical breaks. A detector such as the X-ray Telescope (XRT), but with polarization capability, on board a satellite like Swift would be suitable for testing our predictions.  相似文献   

18.
We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density  θc  . We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号