首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A case study of three springs in Switzerland is used to demonstrate the value of geochemical time-series data as a powerful tool to study the dynamics of groundwater systems. Values of repeatedly measured parameters revealed intermixings of two water types: (a) a 29°C water, circulating to a depth of 1100 m and containing approximately 700 mg/l Ca, 2000 mg/l SO4, 700 mg/l HCO3, 20 mg/l of Na and Cl, 6 mg/l Fe, at least 47 mg/l SiO2, and with an isotopic composition of δD = − 73.0‰ and δ18 O = −10.9‰, and (b) a 12°C or colder water, shallow, and of a post-1953 age, containing 420 mg/l TDI or less, very low in Na and Cl (4 mg/l or less), isotopic values of δD = −71.0‰ and δ18 O = −10.5‰ and tritium as in recent (post-bomb) precipitation.  相似文献   

2.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

3.
The isotopic composition (δD and δ18O) and chloride concentration (Cl) of pore waters from the northern Cascadia continental margin offshore Vancouver Island were measured to characterize the relations between the water flow regime and the distribution, formation and dissociation of gas hydrates. The δD values of pore waters in gas hydrate-bearing sediments are slightly higher ( 1‰) than those of seawater as the result of gas hydrate dissociation during core recovery and handling. Within the seismic blanking zone, the δD values were slightly lower (− 1‰) than values measured from sites outside the blanking area (0‰). We attribute these differences to 1) distillation of D-rich water during hydrate formation in the center of the blanking zone and 2) limited migration of pore water between inside and outside of the blanking zone due to different fluid fluxes. In contrast, the δ18O values and Cl concentrations do not show significant spatial variation due to decreased isotopic fractionation of oxygen and small fraction of chloride relative to hydrogen isotope during gas hydrate formation. The δD value of pore water, therefore, appears to be a sensitive indicator of gas hydrate occurrence. We estimate that gas hydrate occupied at least 2.0 to 6.3% of sediment pore space using δD distribution in this area.  相似文献   

4.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

5.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases.  相似文献   

6.
Twenty two samples of calcretes from seven depth-profiles in the Menindee catchment, Broken Hill region, Australia were analysed for their inorganic and organic carbon contents and inorganic carbon and oxygen isotopes. The organic carbon content is very low (from 0.06 to 0.31 wt.%) while inorganic carbon (carbonate) is up to 3.9 wt.%. Both δ13C and δ18O become more positive closer to the surface. Carbon isotopes vary from − 8.5‰ to −5.5‰ PDB. Oxygen isotopes vary from − 6‰ to − 1.8‰ V-PDB. Depth-related δ13C and δ18O variations correlate over at least 15 km and show no significant variation along the flow path. δ13C values increase by 3‰ and δ18O values increase by 4‰ with decreasing depth in a 1.40 m thick soil profile. The variation is interpreted to indicate an increasingly elevated air temperature, greater water stress and subsequently an aridification of the area through time. The Broken Hill calcrete data confirm that climatic evolution can be deduced from isotopic series and be applied successfully to the Broken Hill region.  相似文献   

7.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

8.
The presence of dolomite breccia patches along Wadi Batha Mahani suggests large-scale fluid flow causing dolomite formation. The controls on dolomitization have been studied, using petrography and geochemistry. Dolomitization was mainly controlled by brecciation and the nearby Hagab thrust. Breccias formed as subaerial scree deposits, with clay infill from dissolved platform limestones, during Early Cretaceous emergence. Cathodoluminescence of the dolostones indicates dolomitization took place in two phases. First, fine-crystalline planar-s dolomite replaced the breccias. Later, these dolomites were recrystallized by larger non-planar dolomites. The stable isotope trend towards depleted values (δ18O: − 2.7‰ to − 10.2‰ VPDB and δ13C: − 0.6‰ to − 8.9‰ VPDB), caused by mixing dolomite types during sampling, indicates type 2 dolomites were formed by hot fluids. Microthermometry of quartz cements and karst veins, post-dating dolomites, also yielded high temperatures. Hot formation waters which ascended along the Hagab thrust are invoked to explain type 2 dolomitization, silicification and hydrothermal karstification.  相似文献   

9.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

10.
The possible contamination of a groundwater system with industrial wastewater originating from a paper mill factory has been investigated in Piteå, N. Sweden. Six samples were collected from the wastewater in the waste dump and twelve samples from the adjacent groundwater were analyzed for chemistry and sulfur isotopes. The industrial wastewater is a saline water consisting mainly of Na–HCO3–SO4, having a high pH and showing δ34S values between 7‰ and 9‰ affected by bacterial sulfate reduction. The groundwaters are relatively dilute, dominated by Na+, Ca2+ and HCO3, but with varying concentrations as exemplified by sulfate with concentrations varying between 3 and 69 mg L− 1 while the δ34S values range from − 0.5‰ to 14.3‰. The data suggest that the main S sources in the waters are the bedrock sulfides and/or atmospheric deposition, which, sometimes, are overlapped by bacterial sulfate reduction. Contamination from the waste dump does not occur.  相似文献   

11.
Black and white dolomite crystals (mm to cm width) of different isotopic composition are associated with Triassic diapirism in central Tunisia, as well as with evaporite minerals and clays. The white dolomites occur mostly in the Jabal Hadifa diapir near the contact with Cretaceous limestones, whereas the smaller black dolomites occur in the Jabal Hamra diapir. The former dolomite has a narrow range of δ18O and δ13C values (− 3.83‰ to − 6.60‰ VPDB for δ18O; − 2.11‰ to − 2.83‰ VPDB for δ13C), whereas the latter dolomite has a wider range and more depleted values (− 4.92‰ to − 9.97‰ for δ18O; − 0.55‰ to − 6.08‰ for δ13C). However, the 87Sr / 86Sr ratios of most of the samples are near Triassic seawater values. Dolomite formation is due to at least two different fluids. The main fluid originated from deeper hydrothermal or basinal sources related to the Triassic saliferous rocks and ascended through faults during the diapiric intrusion. The second, less important fluid source is related to meteoric water originating from Cretaceous rocks.  相似文献   

12.
Heterogeneous shallow Plio-Quaternary formations of the Souss Plain represent the most important aquifer in southern High Atlas Mountains in Morocco. The present work was conducted in the Souss Upstream Basin to identify the chemical characteristics and the origin of groundwater in an aquifer under semi-arid climate. Isotopic and hydrochemical compositions combined with geological and hydrogeological data were used for this purpose. The total dissolved solids vary from 239 to 997 mg l−1, and the following groundwater types are recognized: Ca2+–Mg2+–HCO3, Ca2+–Mg2+–SO42− and Ca2+–Mg2+–Cl. The groundwater is saturated and slightly supersaturated with respect to carbonate minerals and undersaturated with respect to evaporite minerals, which means that the groundwater composition is largely controlled by the dissolution of carbonate rocks known in the basin. The isotopic contents of groundwaters ranged from −8‰ to −5.2‰ for δ18O, from −52‰ to −34‰ for δD, and from 0 to 5.5 TU for tritium. The hydrogen (δD) and oxygen (δ18O) isotope signatures reveal a significant infiltration before evaporation takes place, indicating a major recharge directly from fractures in the crystalline and limestone formations of Atlas Mountains (above 800 m a.s.l.) and infiltration of surface water in the alluvial cones at the border of the Atlas basins. The very low tritium values suggest that the groundwater recharge follows a long flow path and a mixing between old and modern water is shown. However, a slight evaporation effect is noted in the southern part of the basin close to the Anti-Atlas Mountains.  相似文献   

13.
Si stable isotopes in the Earth's surface: A review   总被引:2,自引:0,他引:2  
Silicon (Si) is the second most abundant element on Earth after oxygen. Only few studies have attempted to use stable isotopes of Si as proxies for understanding the Si cycle and its variations in the past. By using three different methods (IRMS, MC–ICP–MS and SIMS), the overall measurements show that the isotopic composition (δ30Si) of terrestrial samples ranges from − 5.7‰ to + 3.4‰. Dissolved Si in rivers and seawater is 30Si-enriched (− 0.8‰ < δ30Si < + 3.4‰) compared to Si in endogeneous rocks (− 1.1‰ < δ30Si < + 0.7‰). This global enrichment is counterbalanced by the Si-bearing phases (biogenic silica, clays, quartz) where Si is, in average, 30Si-depleted (− 5.7‰ < δ30Si < + 2.6‰). These values are the result of fractionation which have been measured or estimated from − 0.3‰ to − 3.8‰. The fractionation is modeled by two types of approaches: the Rayleigh distillation model (closed system) and the steady-state model (open system). These models have been used in the most recent studies to explain the observed δ30Si variations in continental environments and in the sub-Antarctic Ocean.  相似文献   

14.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

15.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

16.
Located at western portion of northern margin of North China craton, the Baotou–Bayan Obo district is one of the most important Fe–REE–Nb and Au metallogenic provinces in China. Presently, about 52 gold deposits and prospects have been discovered, explored and mined, among which Shibaqinhao, Laoyanghao, Houshihua, Saiyinwusu, Wulashan and Donghuofang are the most important ones. All these gold occurrences can be subdivided into three groups (or types) according to its host rocks: (1) hosted by Archean high-grade metamorphic rocks; (2) hosted by Proterozoic sedimentary rocks; (3) hosted by or related to Hercynian alkaline intrusive rocks. The first group contains the Shibaqinhao, Laoyanghao and Houshihua gold deposits. Gold mineralization at these three deposits occurs within Archean amphibolite, gneiss and granulite as gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite and chalcopyrite. The Saiyinwusu deposit belongs to the second group, and occurs within Proterozoic sandstone, quartzite and carbonaceous slate as quartz veins and replacement bodies along the fracture zones. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Wulashan, Donghuofang and Luchang deposits. Gold mineralization at these three deposits occurs predominantly within the Hercynian alkaline syenite or melagabbro stocks and dyke swarms or along their contacts with Archean metamorphic wall rocks as K-feldspar–quartz veins, dissemination and veinlets. Pyrite, galena, chalcopyrite, native gold and calaverite are major metallic minerals.δ34S value of sulfides (pyrite, galena and pyrrhotite) separates from groups 1 and 2 varies from −4.01‰ to −0.10‰ and −3.01‰ to 2.32‰, respectively. δ34S values of Archean and Proterozoic metamorphic wall rocks for groups 1 and 2 deposits range from −20.2‰ to −17.0‰ and −15.8‰ to −16.2‰, respectively. The values are much lower than their hosted gold deposits. All these pyrite separates from Hercynian alkaline intrusions associated with the gold deposits show positive δ34S values of 1.3‰ to 4.8‰, which is higher than those Precambrian metamorphic wall rocks and their hosted gold deposits. δ34S values of the sulfides (pyrite and galena) from the Donghuofang and Wulashan deposits (group 3) increase systematically from veins (−14.8‰ to −2.4‰) to the Hercynian alkaline igneous wall rocks (2.8‰ to 4.8 ‰). All of these deposits in groups 1, 2 and 3 show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot between the Hercynian alkaline intrusions and Precambrian metamorphic wall rocks. Data are interpreted as indicative of a mixing of lead from mantle-derived alkaline magma with lead from Precambrian metamorphic wall rocks.Isotopic age data, geological and geochemical evidence suggest that the ore fluids for the groups 1 and 2 deposits were generated during the emplacement of the Hercynian alkaline syenite and mafic intrusions. The Hercynian alkaline magma may provide heat, volatiles and metals for these groups 1 and 2 deposits. Evolved metamorphic fluids produced by the devolatilization, which circulated the wall rocks, were also progressively involved in the alkaline magmatic hydrothermal system, and may have dominate the ore fluids during late stage of ore-forming processes. Most of these gold deposits hosted by Archean high-grade metamorphic rocks occur at or near the intersections of the NE- and E–W-trending fracture systems. The ore fluid of the group 3 deposits may have resulted from the mixing of Hercynian alkaline magmatic fluids and evolved meteoric waters. The deposits are believed to be products of Hercynian alkaline igneous processes along deep-seated fault zones within Archean terrain.  相似文献   

17.
Petrological data provide evidence that framboidal pyrite, Fe-carbonates and kaolinite are the major diagenetic minerals developed during burial diagenesis in the Tertiary Niger Delta sandstones and associated mudrocks. The pyrite sulphur, carbonate carbon and oxygen and kaolinite oxygen and hydrogen isotope compositions have been determined. These data (pyrite, δ34S = −24.8 to 21.0‰; “siderite”, δ13C(PDB) = −14.7 to +5.0‰, δ18O(PDB) = −19.1 to −0.6‰; Fe-calcite, δ13C(PDB) = +17.5 to 17.9‰, δ18O(PDB) = −8.3 to −8.0‰; kaolinite, δ18O(SMOW) = +14.7 to 17.5‰, δD (SMOW) = −86 to −43‰) have been used to interpret the isotopic compositions of the precipitating pore fluids and/or the temperatures of mineral formation. The interpretation of these results indicate that in the deltaic depositional setting the syndepositional pore waters had a significant but variable marine influence that favoured the early formation of pyrite. Subsequently the subsurface influence of meteoric waters, showing varying degrees of modification involving organic and/or water-rock reactions, played an increasingly significant role in the development of later diagenetic cements in the sediments when abundant authigenic carbonates and kaolinites were formed.  相似文献   

18.
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide–apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10−3 and δ37Cl values from −3.1‰ to −1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu–Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10−3 and δ37Cl values from −5.6‰ to −1.3‰. Finally, the Cu–Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10−3 and δ37Cl values that range from −2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰.The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide–apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ37Cl values would be significantly larger.The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.  相似文献   

19.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

20.
Chemical and isotopic compositions have been measured on 62 microbial gases from Tertiary hemipelagic sediments in the Middle America Trench off Guatemala and from decaying kelp and surf grass currently accumulating in Scripps Submarine Canyon off southern California. Gases from the Middle America Trench have been generated primarily by the reduction of carbon dioxide; methane δ13C varies from −84‰ to −39‰, methane δD varies from −208‰ to −145‰, and carbon dioxide δ13 C varies from −27‰ to +28‰. Gases from Scripps Submarine Canyon have been generated primarily by acetate dissimilation; methane δ13 C varies from −63‰ to −43‰, methane δD varies from −331‰ to −280‰, and carbon dioxide δ13C varies from −17‰ to +3‰.Methane δ13C values as heavy as −40‰ appear to be uncommon for gases produced by carbon dioxide reduction and, in the Middle America Trench, are associated with unusually positive carbon dioxide δ13C values. However, based on the 25‰ intramolecular fractionation between acetate car☐yl carbon and methyl carbon estimated from the Scripps Submarine Canyon data, methane produced by acetate dissimilation may commonly have heavy δ13C values. The δD of methane derived from acetate is more negative than natural methanes from other origins. Microbial methane δD values appear to be controlled primarily by interstitial water δD and by the relative proportions of methane derived from carbon dioxide and acetate.The chemical and isotopic compositions of microbial gas and thermogenic gas overlap, making it difficult to determine the origins of many commercial natural gases from methane δ13C and C2+ hydrocarbon concentrations alone. Measurements of methane δD and carbon dioxide δ13C can provide useful additional information, and together with ethane δ13C data, help identify gases with mixed microbial and thermogenic origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号