首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary ?Many ultramafic complexes, some of which have chromitite bodies, are exposed in the Sangun zone in central Chugoku district, Southwest Japan. Harzburgite is always dominant over dunite, but the dunite/harzburgite ratio varies from complex to complex. Large chromitite bodies are exclusively found in relatively dunite-dominant complexes or portions. The degree of roundness, DR#=[area/(round-length)2] (normalized by a circle’s value: 1/4π), of chromian spinel is variable, depending on lithology of the peridotites. Chromian spinel is mostly anhedral or even vermicular (less than 0.4 in DR#) in harzburgite, and is most frequently euhedral or rounded (within the range of 0.7 to 0.9 in DR#) in dunite. The morphology of spinel is correlated with chemistry: the DR# is positively correlated with Ti content and Fe3+#(=Fe3+/(Cr + Al + Fe3+)), but is not related to Cr#. When chromitite is present in dunite, the spinel is relatively anhedral (vermicular) and low in Ti and Fe3+# in the dunite whereas it is relatively euhedral and high in Ti and Fe3+# in surrounding harzburgite. We define these spinels as “extraordinary” spinels, which are commonly found in Wakamatsu mine area in the Tari-Misaka complex, which exploits the largest chromite body in Japan. The rocks with the “extraordinary” spinels show transitional lithologies (a gradual boundary, one meter to several tens of meters in width) between dunite and harzburgite with “ordinary” spinels. The formation of dunite and chromitite is interpreted as a result of the reaction of harzburgite with a relatively Ti-rich magma (back-arc basin or MORB-like magma) and related magma mixing, as discussed by Arai and Yurimoto (1994). The dike-like occurrence of the dunite and chromitite indicates that the reaction took place along melt conduits (=fractures) less than 200 m in width. Podiform chromitites were formed only when the reaction zone was relatively wide (several tens of meters in width), that is, only when the degree of interaction was relatively high. The magma modified by the reaction percolated, possibly by porous flow from the reaction zone outward, and changed the texture and chemistry of chromian spinel, on the scale of several tens of meters. This type of melt transport, or melt flow through fractures with a melt percolation aureole, may be prevalent in the uppermost mantle. Received February 8, 2000;/revised version accepted December 22, 2000  相似文献   

2.
The Kharcheruz block of the Syumkeu ultramafic massif is a southern fragment of the Khadata ophiolitic belt, which closes the ophiolites of the Polar Urals in the north. The block, striking in the latitudinal direction, is sheetlike in shape and primarily composed of dunite with nearly latitudinal zones of chromite mineralization. The dunites are subject to ductile deformation various in intensity, and this variability is displayed in their heterogeneous structure and texture. The following microstructural types are distinguished by the variety and intensity of their deformation: protogranular → mesogranular → porphyroclastic → porphyrolath → mosaic. The petrostructural patterns of olivines pertaining to the above types reflect conditions of ductile deformation. Protogranular dunite is formed as a product of pyroxene decomposition in mantle harzburgite accompanied by annealing recrystallization at a temperature above 1000°C. Mesogranular dunite is formed as a product of high-temperature plastic flow by means of translation sliding in olivine and diffuse creep at a temperature dropping from 1000 to 650°C and at a low rate (<10–6 s–1). Cr-spinel segregates into linear zones of disseminated chromite mineralization within zones of bedding-plane plastic flow. Porphyroclastic and mosaic dunites are formed under conditions of intense deformation at a temperature of 500–750°C and at a significant rate (>10–6 s–1). Dunite is deformed by means of syntectonic recrystallization and subordinate translation gliding. Linear zones of disseminated mineralization undergo destruction thereby, with the formation of lenticular chromitite bodies from which ductile olivine is squeezed out with the formation of densely impregnated and massive ores.  相似文献   

3.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

4.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

5.
Kefdag and Soridag chromite pods occur in upper mantle residual peridotites, which consist of harzburgite and dunites. The peridotites represent the residual of multistage, depleted upper-mantle peridotites. The chromitite bodies were formed during the uprising of chromium-rich picritic melts, through the residual upper mantle diapir, along the magma conduits. Chromitite grains were deposited in the caves of the magma conduits under the control of the convection currents.  相似文献   

6.
西藏罗布莎不同类型铬铁矿的特征及成因模式讨论   总被引:6,自引:2,他引:4  
蛇绿岩地幔橄榄岩中产出的豆荚状铬铁矿是铬的主要来源。已有的研究表明,豆荚状铬铁矿形成于洋中脊或俯冲带的浅部地幔环境。但随着近些年在豆荚状铬铁矿及围岩地幔橄榄岩中不断发现金刚石等深部矿物,人们也开始质疑豆荚状铬铁矿的浅部成因理论。本文系统研究了西藏雅鲁藏布江蛇绿岩带东段的罗布莎豆荚状铬铁矿床,识别出两类铬铁矿,一类以方辉橄榄岩为围岩的致密块状铬铁矿(Cr1#),另一类是以纯橄岩壳为围岩的浸染状铬铁矿(Cr2#)。两类铬铁矿在铬尖晶石的矿物化学成分、PGE和Re-Os同位素特征上存在较大差别,属不同演化过程的结果。地幔橄榄岩的地球化学特征指示罗布莎橄榄岩中存在由低铬且轻稀土亏损和高铬且轻稀土富集的两类方辉橄榄岩。在此基础上,提出豆荚状铬铁矿为多阶段形成的新认识,经历了早期俯冲至地幔过渡带(410~660km)的陆壳和洋壳物质被脱水和肢解,过渡带产生的热和流体促成了地幔的熔融和Cr的释放和汇聚;铬铁矿浆在地幔柱/地幔对流驱动下,运移至过渡带顶部冷凝固结,并有强还原性的流体进入,后者携带了深部形成的金刚石、斯石英等高压矿物,并进入"塑性-半塑性地幔橄榄岩"中;随着物质向上移动,深度降低,早期超高压相矿物发生相变,如斯石英转变成柯石英,高压相的铬铁矿中出溶成柯石英和单斜辉石;在侵位过程和俯冲带环境,含水熔体与方辉橄榄岩反应形成了不含超高压矿物的规模相对较小的浸染状铬铁矿(Cr2#)及纯橄岩壳。  相似文献   

7.
We present results of field, microstructural, and textural studies in the Twin Sisters ultramafic complex (Washington State) that document localized deformation associated with the formation of dunite channels in naturally deformed upper mantle. The Twin Sisters complex is a well-exposed, virtually unaltered section of upper mantle lithosphere comprised largely of dunite and harzburgite (in cm- to m-scale primary compositional layers), and variably deformed orthopyroxenite and clinopyroxenite dikes. A series of ∼N–S striking, m-scale dunite bands (typically with porphyroclastic texture) occur throughout the study area and crosscut both the primary compositional layers and older orthopyroxenite dikes. Structural relationships suggest that these dunite bands represent former zones of channelized melt migration (i.e., dunite channels), and that strain localization was associated with melt migration. Early formed orthopyroxenite dikes are either absent within cross-cutting dunite channels, or have been displaced within channels relative to their position in the adjacent host rocks. These pre-existing orthopyroxenite dikes provide strain markers illustrating that displacement was localized primarily along channel margins, which have opposite senses of shear. In all cases where offsets were noted, the center of the channel was moved southward relative to its margins. Material flow and strain was, therefore, partitioned within channels during melt migration, and dunite channels did not accommodate net shear displacement of the adjacent host peridotites. Primary compositional layers adjacent to dunite channels document opposite rotation of olivine [100] crystallographic axes on either side of channel margins, consistent with the kinematic reversal inferred from offset markers at the outcrop scale, suggesting that the formation of dunite channels also induced host rock deformation proximal to channels. Strain localization that was focused at the margin of the bands was likely facilitated by melt-induced weakening. Channelized movement within the dunite bands may have resulted from matrix compaction within channels, pressure gradients during melt migration, or a combination of these processes during coaxial deformation.  相似文献   

8.
Chromite-bearing peridotites of the Ordovician Miyamori ophiolitecomplex exhibit spatial mineralogical variations on scales rangingfrom several centimeters to a few kilometers. The largest variationscorrespond to the entire structure of the complex, which featuresa layered zone of interstratified harzburgite, wehrlite, andvarious pyroxenites sandwiched between zones of unlayered harzburgiteand dunite containing only minor pyroxenite bands. All zonesexhibit the same deformation microstructures, tabular equigranularto porphyroclastic textures, and strong mineral aggregate lineation.Harzburgite from the unlayered zones is characterized by olivinevalues of 100Mg/(Mg+Fe)=91–93.5 and chromite values of100Cr/(Cr+Al+Fe3+)=40–75. These variables exhibit a positivecorrelation, which is typical of harzburgites and lherzolitesfrom the basal units of ophiolites and from xenoliths in alkalibasalts and kimberlites. The harzburgite is therefore interpretedas a residue from partial melting in the mantle. By contrast,harzburgite in the interlayered zone features olivine valuesof 100Mg/(Mg+Fe)=88–92 and chromite values of 100Cr/(Cr+Al+Fe3+)=40–60,and in this case the variables tend to show a negative correlationin any given locality and they partly overlap data from theintercalated wehrlite and dunite. The harzburgite of the layeredzone is interpreted as residual mantle that reacted with evolvedmelts that then crystallized as wehrlite and dunite. The harzburgitein the unlayered zones is more refractory than that in the layeredzone, even after removing effects of reaction. This differencecan be explained either by enhanced partial melting and meltextraction in the unlayered zones, possibly owing to the preferentialintroduction of a waterrich fluid, or by melt segregation fromthe unlayered zones and transfer to the layered zone in responseto a piezometric pressure gradient and compaction of a solidresidual matrix. Mineralogical evidence suggests that evolvedmelts migrated through conduits formed in the layered zone byfracturing or diapirism.  相似文献   

9.
岩浆型矿床一般认为是岩浆分异的产物,因为这类矿床通常缺乏强烈的近矿围岩蚀变。蛇绿岩中的豆荚状铬铁矿被认为是一种典型的岩浆型矿床,流行的成因模型包括岩浆通道模型和熔体-岩石反应模型。深部晶体群的大量发现,表明铬铁矿成矿系统不是一种理想系统,而是至少由两类子系统组成的复杂性动力系统。因此,流行模型不再适用,必须构建能够整合新证据的成因模型。这类矿床的典型地质特征是具有从方辉橄榄岩围岩经包壳纯橄榄岩到铬铁矿石的分带,且包壳纯橄榄岩与铬铁矿之间为渐变接触关系,包壳纯橄榄岩与方辉橄榄岩之间既可以为渐变接触关系,也可以为截然接触关系或侵入接触关系。因此,阐明纯橄榄岩的成因是理解豆荚状铬铁矿形成机制的关键。西藏雅鲁藏布江缝合带中罗布莎和泽当两个代表性超镁铁质杂岩体的新观察揭示:(1)包壳纯橄榄岩的出露宽度变化于厘米级到百米级,但岩石具有均匀的细粒结构,流行模型难以解释;(2)包壳纯橄榄岩可以划分为至少两种构造类型:块状纯橄榄岩和片理化纯橄榄岩,暗示了纯橄榄岩形成过程的多阶段特点;(3)包壳纯橄榄岩主要由变晶橄榄石组成,仅含有少量由熔体或流体析出的橄榄石晶体;(4)与方辉橄榄岩相比,包壳纯橄榄岩中的橄榄石具有高MgO、Cr2O3、CaO和低MnO、Al2O3的特点,展示了矛盾的晶体化学特征;(5)邻近铬铁矿体的纯橄榄岩中常见反豆状结构,类似于多相稀释流体流体制中紊流产生的中尺度结构。上述看似矛盾的证据表明包壳纯橄榄岩的形成过程有大量深部流体的参与,因而流体过程可以作为构建一个新的整合模型的基础。据此,文中提出一个熔体-流体流模型,其基本机制是溶解-沉淀反应Opx+Fluid→Ol±Sp±Cpx±Pl±SiO2(fluid),而基本前提则是深部还原流体的持续供给和熔体-流体流的快速上升。此外,文中还表明,依据火成岩地质学、岩石学和名义无水矿物晶体化学证据也可以再造岩浆系统的流体过程。  相似文献   

10.
早侏罗世东巧蛇绿岩位于班公湖-怒江缝合带(班怒带)东段,蕴含较为丰富的豆荚状铬铁矿资源。东巧地幔橄榄岩主体由方辉橄榄岩组成,铬铁矿赋存在其内部的纯橄岩脉中。方辉橄榄岩和纯橄岩均显示出弧前橄榄岩的特征。方辉橄榄岩中橄榄石的Fo值为89.8~92.2,斜方辉石的和单斜辉石的Mg^(#)值分别变化于89.7~92.0和92.7~95.1,铬尖晶石的Cr^(#)值(Cr^(#)=100×Cr/(Cr+Al))为60.8~75.9;纯橄岩中橄榄石的Fo值为91.7~92.5,斜方辉石Mg^(#)值变化于91.7~92.1,单斜辉石的Mg^(#)值变化于94.0~94.6,铬尖晶石的Cr^(#)值为69.0~83.1。铬铁矿主要呈致密块状和浸染状构造,其中铬尖晶石的矿物包裹体有橄榄石、斜方辉石、单斜辉石、角闪石和铂族矿物等。矿石中的铬尖晶石与橄榄岩中的铬尖晶石相比,具有较高的Cr^(#)值(72.5~86.9)和Mg^(#)值(52.8~70.5),较低的Al_(2)O_(3)(6.25%~13.6%)、TiO_(2)(0.06%~0.16%)和Zn(518×10^(-6)~714×10^(-6)),属于高铬型铬铁矿,平衡熔体与玻安质熔体有亲缘性。方辉橄榄岩中铂族元素(PGE)总含量(14.01×10^(-9)~32.81×10^(-9))近似于原始地幔,IPGE(Os、Ir和Ru)/PPGE(Rh、Pt和Pd)的比值均大于1;纯橄岩的PGE总量(13.36×10^(-9)~16.08×10^(-9))略低于原始地幔,IPGE和PPGE富集程度近似;铬铁矿的铂族元素总量(108.4×10^(-9)~645.7×10^(-9))远远高于原始地幔和地幔橄榄岩中PGE的含量,且IPGE以及Rh相对原始地幔富集,而Pt和Pd相对亏损,具明显右倾特征的配分模式,指示东巧地幔橄榄岩和铬铁矿形成过程经历了熔体抽取和交代作用。通过与全球典型豆荚状铬铁矿矿床的特征对比,认为班怒带的蛇绿岩应该有良好的铬铁矿成矿背景。  相似文献   

11.
Mafic-ultramafic fragments of a dismembered ophiolite complex are abundant in the late Precambrian Pan African belt of the Eastern Desert of Egypt and north-east Sudan. The ultramafic bodies in the Eastern Desert of Egypt are mostly characterised by the harzburgite–dunite–chromitite association. Because of their severe metamorphism, almost all primary silicates were converted to secondary minerals and we use the chrome spinel as a reliable petrogenetic indicator. The podiform chromitite deposits are common as small and irregularly shaped masses in the central and southern parts of the Eastern Desert. They strongly vary in texture, degree of alteration and chemical composition of chrome spinel. The podiform chromitites exhibit a wide range of composition from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.65 to 0.85 in dunite, quite similar in the high-Cr chromitite, whereas it is around 0.5 in harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel are reported for the first time from the Pan African Proterozoic podiform chromitites. The petrological characteristics of Pan African podiform chromitites and associated peridotites of Egypt are similar to those of Phanerozoic ophiolites. The Proterozoic podiform chromitites may have formed in the same way as the Phanerozoic ones, namely by melt-harzburgite reaction and subsequent melt mixing. The similarity of the mantle section of the late Proterozoic and the Phanerozoic ophiolites suggests that the thermal conditions controlling genesis of the crust–mantle system basically have not changed since the late Proterozoic era. The Pan African harzburgite is very similar to abyssal peridotite at fast-spreading ridges, and the high-Cr, low-Ti character of spinel in chromitite and dunite indicates a genetic link with a supra-subduction zone setting. The late Proterozoic ophiolites of Egypt are possibly a fragment of oceanic lithosphere modified by arc-related magmatic rocks, or a fragment of back-arc basin lithosphere. Received: 26 October 1999 / Accepted: 28 June 2000  相似文献   

12.
The Bir Tuluha ophiolite is one of the most famous chromitite-bearing occurrences in the Arabian Shield of Saudi Arabia, where chromitite bodies are widely distributed as lensoidal pods of variable sizes surrounded by dunite envelopes, and are both enclosed within the harzburgite host. The bulk-rock geochemistry of harzburgites and dunites is predominately characterized by extreme depletion in compatible trace elements that are not fluid mobile (e.g., Sr, Nb, Ta, Hf, Zr and heavy REE), but variable enrichment in the fluid-mobile elements (Rb and Ba). Harzburgites and dunites are also enriched in elements that have strong affinity for Mg and Cr such as Ni, Co and V. Chromian spinels in all the studied chromitite pods are of high-Cr variety; Cr-ratio (Cr/(Cr + Al) atomic ratio) show restricted range between 0.73 and 0.81. Chromian spinels of the dunite envelopes also show high Cr-ratio, but slightly lower than those in the chromitite pods (0.73–0.78). Chromian spinels in the harzburgite host show fairly lower Cr-ratio (0.49–0.57) than those in dunites and chromitites. Platinum-group elements (PGE) in chromitite pods generally exhibit steep negative slopes of typical ophiolitic chromitite PGE patterns; showing enrichment in IPGE (Os, Ir and Ru), over PPGE (Rh, Pt and Pd). The Bir Tuluha ophiolite is a unimodal type in terms of the presence of Ru-rich laurite, as the sole primary platinum-group minerals (PGM) in chromitite pods. These petrological features indicates that the Bir Tuluha ophiolite was initially generated from a mid-ocean ridge environment that produced the moderately refractory harzburgite, thereafter covered by a widespread homogeneous boninitic melt above supra-subduction zone setting, that produced the high-Cr chromitites and associated dunite envelopes. The Bir Tuluha ophiolite belt is mostly similar to the mantle section of the Proterozoic and Phanerozoic ophiolites, but it is a “unimodal” type in terms of high-Cr chromitites and PGE-PGM distribution.  相似文献   

13.
刘建国  王建 《地质学报》2016,90(6):1182-1194
西昆仑库地蛇绿岩发育小规模的铬铁矿床,矿体呈豆荚状和层状、似层状,均与纯橄岩紧密伴生。这些纯橄岩主要由橄榄石和副矿物尖晶石组成,与方辉橄榄岩相比,橄榄岩中的橄榄石粒径粗(平均2.5mm),Mg#(88~90)低,这与它们全岩低Mg#(90)值,富Al_2O_3、TiO_2、Cr_2O_3、Fe_2O_3相吻合,与熔融残余成因的纯橄岩明显不同,反映了其很可能是由熔体与方辉橄榄岩反应而成。矿体主要由块状、浸染状及脉状铬铁矿石组成;铬铁矿石中的尖晶石具有低而相对稳定的Cr#(43~56),低于富铬型铬铁矿矿床中的铬铁矿(Cr#60)。块状矿石与纯橄岩呈突变接触,矿石中的尖晶石呈浑圆状,包裹有较多橄榄石、辉石等硅酸盐矿物及角闪石等含水硅酸盐矿物;浸染状铬铁矿石中的尖晶石与橄榄石颗粒构成交织结构,或呈云朵状,沿橄榄石颗粒边界相互连接,矿石的结构构造显示了熔/岩反应成因特征。通过计算分析,我们认为该区富铝型铬铁矿石是由拉斑玄武质熔体与地幔橄榄岩反应而成,由于熔体中含有较高的H_2O,参与反应的熔体可能源于弧后扩张脊环境。  相似文献   

14.
ABSTRACT

A chromite deposit was discovered in the Kudi ophiolite in the Palaeozoic western Kunlun orogenic belt. Chromite forms elongated (<2 m in width) and banded chromitite bodies (<0.1 m in width for each band) in dunite and podiform chromitite bodies (<1.5 m in width) in harzburgite. Dunite is classified into two types. Type I dunite hosting massive and banded chromitites shows low Fo in olivine (88.1–90.9), moderate Cr# [=Cr/(Cr + Al), 0.47–0.56] in chromite, and a positively sloped primitive mantle-normalized platinum group elements (PGE) pattern, suggesting that it is a cumulate of a mafic melt. Harzburgite and type II dunite show olivine with high Fo (>91.1) and chromite with moderate to high Cr# (0.44–0.61), and flat to negatively sloped primitive mantle-normalized PGE patterns, indicating that they are residual mantle peridotite after partial melting. Chromite in all three types of chromitites has relatively uniform moderate values Cr# ranging from 0.43 to 0.56. Massive chromitite contains euhedral chromite with high TiO2 (0.40–0.43 wt.%) and has a positively sloped primitive mantle-normalized PGE pattern, suggesting that it represents a cumulate of a melt. Rocks containing disseminated and banded chromite show overall low total PGE, < 117 ppb, and a negatively sloped primitive mantle-normalized PGE pattern. Chromite grains in these two types of occurrences are irregular in shape and enclose olivine grains, suggesting that chromite formed later than olivine. We suggest that chromite-oversaturated melt penetrated into the pre-existing dunite and crystallized chromite. The oxygen fugacity (fO2 values of chromitites and peridotites are high, ranging from FMQ+0.8 (0.8 logarithmic unit above the fayalite-magnetite-quartz buffer) to FMQ+2.3 for chromitites and from FMQ+0.9 to FMQ+2.8 for peridotites (dunite and harzburgite). The mineral compositions and high fO2 values as well as estimated parental magma compositions of the chromitites suggest that the Kudi ophiolite formed in a sub-arc setting.  相似文献   

15.
Serpentinized ultramafic rocks occur in two separate basement complexes in the South Arm of Sulawesi, the Bantimala and Barru Blocks. We present petrographic, mineral chemical and geochemical data for these rocks, and interpret them in terms of petrogenesis and tectonic setting. The rocks of both blocks show strong serpentinization of original anhydrous silicates. The Bantimala ultramafics consist mainly of peridotite (harzburgite and dunite) and clinopyroxenite, with lenses of podiform chromitite. Metamorphism is evidenced by the occurrence of amphibolite-facies tremolite schist. In contrast, the Barru ultramafics consist of harzburgite peridotite and podiform chromitite, which also show an amphibolite-facies overprint that in this case may be related to intrusion by a large dacite/granodiorite body. Whole-rock trace element analyses and spinel compositions show that the Barru harzburgite is depleted relative to primitive mantle, and has had some melt extracted. In contrast, the Bantimala dunite, harzburgite and clinopyroxenite are cumulates. Both are derived from a supra-subduction zone environment, and were obducted during the closure of small back-arc basins. If there has been no rotation of the blocks, then the Bantimala ultramafics were emplaced from an ENE direction, while the Barru ultramafics were emplaced from the WNW. The ultramafic suites from these two blocks are juxtaposed with metamorphic assemblages, which were later intruded by younger volcanics, particularly in the Barru Block.  相似文献   

16.
Geological and isotopic evidence of Late Vendian magmatic events in restitic ultramafic mantle rocks of the Voikar-Syn’ya ophiolitic massif are considered and correlated with events at the eastern margin of the East European Platform. The geological and isotopic data show that the ophiolitic complexes of the Polar Urals were formed during several stages. The percolation of melts through peridotites was recorded in the newly formed mineral assemblages, for example, olivine + chromite ± zircon. Zircon crystallized from the residual fraction of the evolved basic melt that impregnated peridotite. The active interaction of hot restitic harzburgite with the migrating melt resumed repeatedly and could have led to the formation of several generations of chromite-bearing dunite. An important geological inference can be made from this suggestion: There is a high probability that isotopic markers of different age have been retained in restitic mantle complexes of ophiolites. The U-Pb dating of zircons with a SHRIMP-2 ion microprobe has shown that the isotopic age of seven grains is 585.3 ± 6 Ma (MSWD is 0.036 and the probability of concordance is 0.85). The obtained age of zircon from chromitite marks a Vendian tectonomagmatic event that occurred in the upper mantle of the transitional zone between the East European Plate and the oceanic basin. The island-arc complexes of the Polar Urals developed on the tectonically juxtaposed fragments of the Early Paleozoic and pre-Paleozoic oceanic crust. These crustal rocks were reworked during younger magmatic events related to the origin of the Middle Paleozoic island arcs. As a result, the rocks that formed in different geological epochs were locally retained in the restitic mantle complexes of a spatially indivisible ophiolitic association.  相似文献   

17.
Kilometer-sized, tabular dunite bodies are contained within harzburgite, lherzolite and plagioclase lherzolite host rocks in the Trinity peridotite, northern California. An igneous origin for the dunite by crystal fractionation of olivine from a melt is suggested by their tabular shapes, clots of poikilitic clinopyroxene grains, chromite pods, and by analogy to dunite bodies in the Samail and Vourinos ophiolites (Hopson et al. 1981; Harkins et al. 1980; Moores 1969). However, structures and systematic variations in mineralogy and mineral chemistry suggest that at least the marginal few meters of the bodies are residues produced by extraction of a basaltic component from a plagioclase lherzolite protolith. A model is suggested in which a picritic melt ascended through the upper mantle in vertically oriented channels. Part of the dunite in the tabular bodies was produced by fractional crystallization of olivine from the melt. Additional dunite at the margins of the bodies was formed by extraction of a basaltic component from plagioclase lherzolite wall-rocks during partial assimilation by the picritic melt. The latter process is similar to the wall-rock reaction discussed by Green and Ringwood (1967) and is essentially zone refining of the the mantle wall rocks by the migrating melt. It is significant because it suggests a mechanism in addition to fractional crystallization for enrichment of incompatible elements in basalts.Submitted to Contributions to Mineralogy and Petrology, April, 1981. Resubmitted after Review, October, 1981  相似文献   

18.
达机翁蛇绿岩位于雅鲁藏布江缝合带的西段北亚带,该蛇绿岩主要由地幔橄榄岩、玄武岩以及硅质岩组成,其中地幔橄榄岩以方辉橄榄岩为主,同时含有少量的纯橄榄岩,纯橄岩主要呈不规则透镜状或团块状分布于方辉橄榄岩中。在达机翁地幔橄榄岩中产出有3种不同类型的铬铁矿,分别为块状,豆状以及浸染状铬铁矿。文章主要对达机翁地幔橄榄岩的方辉橄榄岩及豆荚状铬铁矿进行了研究,结合岩石的主量元素和铂族元素,对地幔橄榄岩和豆荚状铬铁矿的成因以及雅鲁藏布江缝合带的找矿远景进行了探讨。达机翁地幔橄榄岩具有较高的Mg O含量以及较低的Al2O3和Ca O等含量,这种亏损的全岩成分指示了达机翁地幔橄榄岩经历了较高的部分熔融作用,同时方辉橄榄岩的PGEs的总量为23.68×10-9~31.02×10-9,高于原始地幔的值,Pd和Cu 2个元素的含量较为分散明显偏离部分熔融曲线,指示了达机翁方辉橄榄岩可能遭受了熔体的改造,在熔体-岩石反应的过程中,导致了富含PPGE的硫化物的加入。达机翁豆荚状铬铁矿为高Cr型铬铁矿,具有IPGE和Rh明显富集以及Pt,Pd明显亏损的特征,不同类型的铬铁矿之间具有一致的PGEs的分配模式。雅鲁藏布江缝合带内大量分布的超镁铁岩体在岩石组合、地球化学特征、成因以及形成时代等方面,均具有相似性,是中国铬铁矿找矿的有利远景区。  相似文献   

19.
张然  熊发挥  徐向珍  刘钊  杨经绥 《地质学报》2019,93(7):1655-1670
依拉山蛇绿岩位于班公湖-怒江缝合带中部,主要由蚀变较强的方辉橄榄岩和纯橄岩及豆荚状铬铁岩组成。铬铁矿矿体集中分布在依拉山岩体北部,围岩以纯橄岩为主,少量为方辉橄榄岩。铬铁岩中铬尖晶石的电子探针分析结果表明Cr~#值为64.2~73.9,Mg~#值为46.9~71.6,TiO_2为0.03%~0.31%,Al_2O_3为4.5%~18.7%,指示依拉山铬铁矿为高铬型铬铁矿。方辉橄榄岩的稀土元素及微量元素配分模式指示其具有深海地幔橄榄岩的特征,铬铁矿的铂族元素具有IPGE富集而PPGE亏损的特点,呈现出右倾的配分模式,且Pd/Ir与Pt/Pt~*之间不存在明确的相关性,反映出依拉山岩体经历了岩石-熔体反应的演化过程。结合其他岩体内铬铁矿的对比研究,提出依拉山铬铁矿可能是在俯冲带环境下,由玻安质熔体与岩石反应形成,并经历了多阶段的演化过程,即早期的洋中脊(MORB)环境以及后期的俯冲带(SSZ)的改造。  相似文献   

20.
The ultramafic sequence and associated chromitites of the Nan-Uttaradit ophiolite in the northeastern part of Thailand have been studied in the field and by applying petrography and geochemistry to whole rock samples and minerals. The ultramafic rocks comprise irregulary shaped bodies of dunite, harzburgite, orthopyroxene-rich lherzolite and orthopyroxene-rich harzburgite, clinopyroxene-rich dunite and intrusive clinopyroxenite-websterite bodies. Three types of chromitite were distinguished. Type I chromitite lenses and type II layers which are hosted in orthopyroxenite in the northern part and in dunite in the central part of the ophiolite. Type III chromitite forms lenses or layers in clinopyroxenites in the central and southern parts of the belt. According to the modal and chemical composition the peridotites and orthopyroxenites are strongly refractory. They originated during different stages of interaction between percolating melts and peridotite. The chromitites of types I and II, which are very rich in Cr (up to 68 wt.% Cr203), crystallized from a boninitic parental magma under highly reducing conditions in the northern part and moderate oxygen fugacities (FMQ) in the central part of the ophiolite. The chromitite of type III which are characterized by the highest Fe3+/(Fe3+ + Cr + Al) -ratios, and hosted in intrusive clinopyroxenite-websterite-rocks, cumulated from a CaO-rich transitional boninitic melt under fO2 conditions around FMQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号