首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model that predicts the flux of222Rn out of deep-sea sediment is presented. The radon is ultimately generated by230Th which is stripped from the overlying water into the sediment. Data from many authors are compared with the model predictions. It is shown that the continental contribution of ionium is not significant, and that at low sedimentation rates, biological mixing and erosional processes strongly affect the surface concentration of the ionium. Two cores from areas of slow sediment accumulation, one from a manganese nodule region of the central Pacific and one from the Rio Grande Rise in the Atlantic were analyzed at closely spaced intervals for230Th,226Ra, and210Pb. The Pacific core displayed evidence of biological mixing down to 12 cm and had a sedimentation rate of only 0.04 cm/kyr. The Atlantic core seemed to be mixed to 8 cm and had a sedimentation rate of 0.07 cm/kyr. Both cores had less total excess230Th than predicted.Radium sediment profiles are generated from the230Th model. Adsorbed, dissolved, and solid-phase radium is considered. According to the model, diffusional losses of radium are especially important at low sedimentation rates. Any particulate, or excess radium input is ignored in this model. The model fits the two analyzed cores if the fraction of total radium available for adsorption-desorption is about 0.5–0.7, and ifK, the distribution coefficient, is about 1000.Finally, the flux of radon out of the sediments is derived from the model-generated radium profiles. It is shown that the resulting standing crop of222Rn in the overlying water may be considered as an added constraint in budgeting230Th and226Ra in deep-sea sediments.  相似文献   

2.
In Funka Bay of Hokkaido, Japan, seawater, suspended matter and settling matter were collected once every month in the summer of 1974. These samples were analyzed for234Th, a short-lived daughter of dissolved238U. A pronounced disequilibrium between234Th and238U, and a highly variable concentration of234Th were found. Positive correlation, however, exist among the deficiency of234Th relative to238U in seawater, the concentration of particulate234Th, the fraction of particulate234Th to total234Th in seawater, the total dry weight of suspended matter, and the primary productivity during the month previous to sampling. The specific activity of234Th for the settling particles (620 ± 170 dpm/g) was nearly equal to that for suspended particles (720 ± 600 dpm/g) but much greater than that for plankton (47 ± 24 dpm/g). These facts suggest that suspended particles are somehow closely related to the removal of heavy metals from seawater, in spite of the negligibly small settling flux of suspended matter. The residence time of thorium in Funka Bay (mean depth: 60 m) is found to be about 60 days, which is nearly equal to those of210Pb and210Po.  相似文献   

3.
The vertical distributions of210Pb and226Ra in the Santa Barbara Basin have been measured. The210Pb/226Ra activity ratio is close to unity in surface water, but ranges from 0.2 to 0.6 in deep water with a mean value of 0.3 (d > 250m), suggesting rapid removal of210Pb from the water column. The210Pb concentrations in the particulate phase at different water depths indicate that the removal of210Pb is due to adsorption on settling particles.It is estimated that the particulate210Pb contributes about 50–70% of the total210Pb measured on unfiltered water samples of the Santa Barbara Basin. The fate of210Pb (and Pb) in the water column is thus strongly controlled by the settling particles, which have a mean residence time of one year or less in the basin. Material balance calculation for210Pb in the basin suggests that there is an external source supplying about 70–80% of the210Pb observed in particulate material or sediments. This excess210Pb is most likely provided by particles entering the basin loaded already with210Pb.  相似文献   

4.
Cosmogenic7Be(t1/2 = 53.3days) has been used to estimate particle-mixing rates in the upper layers of lacustrine and near-shore marine sediments. Excess210Pb and/or239,240Pu have provided limits on rates of sediment accumulation in these environments and indices of the efficiency of the sediments as collectors of reactive nuclides over longer time scale.In sediment cores from Long Island Sound (marine) and Lake Whitney (fresh-water)7Be was measurable in the top 2–3 cm. Diffusion-analog particle-mixing coefficients calculated from these data are in the range of 10?7 cm2/s. For Long Island Sound the coefficients are lower by factors of 3–6 than those estimated from the depth distributions of excess234Th at the same stations [14]. For Lake Whitney the calculated mixing coefficient is an upper limit because of the possibility of a sampling artifact.Measurements of total (wet + dry) atmospheric deposition of7Be in New Haven give an average flux of 0.07 dpm/cm2 day during March-November, 1977; this is equivalent to a steady-state inventory of 5.4 dpm/cm2 in a perfect collector. Sediment cores from Long Island Sound contain about half this7Be inventory, consistent with either a mean residence time for7Be in the water column of about one half-life or with post-depositional loss of7Be from Long Island Sound sediments. The Lake Whitney cores contain about 5 dpm/cm2, much nearer the atmospheric delivery. A higher inventory of7Be in fresh-water, as compared to marine, sediments could be due either to a shorter mean residence time for7Be in fresh water or to lateral transport processes in the lake or its catchment. High inventories of excess210Pb and239,240Pu in Lake Whitney sediments demonstrate the importance of lateral transport on longer time scales at least.  相似文献   

5.
6.
The distribution of210Po and210Po in dissolved (<0.4 μm) and particulate (>0.4 μm) phases has been measured at ten stations in the tropical and eastern North Atlantic and at two stations in the Pacific. Both radionuclides occur principally in the dissolved phase. Unsupported210Pb activities, maintained by flux from the atmosphere, are present in the surface mixed layer and penetrate into the thermocline to depths of about 500 m. Dissolved210Po is ordinarily present in the mixed layer at less than equilibrium concentrations, suggesting rapid biological removal of this nuclide. Particulate matter is enriched in210Po, with210Po/210Pb activity ratios greater than 1.0, similar to those reported for phytoplankton. Box-model calculations yield a 2.5-year residence time for210Pb and a 0.6-year residence time for210Po in the mixed layer. These residence times are considerably longer than the time calculated for turnover of particles in the mixed layer (about 0.1 year). At depths of 100–300 m,210Po maxima occur and unsupported210Po is frequently present. Calculations indicate that at least 50% of the210Po removed from the mixed layer is recycled within the thermocline. Similar calculations for210Pb suggest much lower recycling efficiencies.Comparison of the210Pb distribution with the reported distribution of226Ra at nearby GEOSECS stations has confirmed the widespread existence of a210Pb/226Ra disequilibrium in the deep sea. Vertical profiles of particulate210Pb were used to test the hypothesis that210Pb is removed from deep water by in-situ scavenging. With the exception of one profile taken near the Mid-Atlantic Ridge, significant vertical gradients in particulate210Pb concentration were not observed, and it is necessary to invoke exceptionally high particle sinking velocities to account for the inferred210Pb flux. It is proposed instead that an additional sink for210Pb in the deep sea must be sought. Estimates of the dissolved210Pb/226Ra activity ratio at depths greater than 1000 m range from 0.2 to 0.8 and reveal a systematic increase, in both vertical and horizontal directions, with increasing distance from the sea floor. This observation implies rapid scavenging of210Pb at the sediment-water interface and is consistent with a horizontal eddy diffusivity of 3?6 × 107 cm2/sec. The more reactive element Po, on the other hand, shows evidence of rapid in-situ scavenging. In filtered seawater,210Po is deficient, on the average, by ca. 10% relative to210Pb; a corresponding enrichment is found in the particulate phase. Total inventories of210Pb and210Po over the entire water column, however, show no significant departure from secular equilibrium.  相似文献   

7.
The progressive weakening and final disappearance (in 1979) of the long-term meromictic structure of the Dead Sea are clearly reflected in the depth profiles of210Pb and210Po. In 1977/78, prior to overturn, dissolved210Pb (35–50 dpm kg?1) predominated over particulate210Pb (1–2 dpm kg?1) in the oxic upper waters, whereas the reverse was true in the anoxic deep waters (16–20 dpm kg?1 particulate vs. 2–5 dpm kg?1 dissolved). The exact extent of the disequilibrium between210Pb and226Ra is hard to evaluate in the upper oxic layers, because the progressive deepenings resulted in mixing with deep waters. By contrast, one can estimate the residence time of dissolved210Pb in the unperturbed anoxic deepest layers, because these remained isolated, at about 3 years. Following the overturn of 1979, dissolved210Pb exceeded particulate210Pb at all depths. The210Po profiles of the stratified lake resembled in shape those of its grandparent210Pb, but with distinct characteristics of their own in the oxic upper waters where particulate210Po (8–12 dpm kg?1) was greatly in excess over particulate210Pb, while dissolved210Po (25–40 dpm kg?1) was slightly deficient. Immediately following the overturn, dissolved and particulate210Po were similar (about 15 dpm kg?1), at all depths. The destruction of the lake's meromictic structure was accompanied by a reduction of its210Pb inventory, while that of210Po was almost unaffected. Thus, at overturn a transient state was created with the inventory of210Po exceeding that of210Pb.  相似文献   

8.
Because of high specific activities of excess234Th (t1/2 = 24.1 days) on suspended particles in the deep sea, this nuclide is potentially an extremely sensitive indicator of particle inputs and dynamics at the seafloor. Measurements were made at two deep-sea sites in order to examine this potential. Inventories of excess234Th at a low-current hemipelagic mud site (3990 m) in the Panama Basin were~ 1.5 (September, ′81) and~ 2.5 (June, ′82) dpm/cm2. The steady state fluxes to the seafloor calculated from these inventories are in rough agreement with radionuclide fluxes measured in sediment traps. Small-scale (~ 100m) spatial variability in inventories implies biologically significant heterogeneity in particle inputs. Sediment from the continental rise site in the northwest Atlantic (2800 m), a site with higher current velocities than the Panama Basin, had an inventory of~ 1.9dpm/cm2. This inventory is also in rough agreement with predictions made on the basis of nearby sediment trap data. Particle mixing coefficients of~ 30cm2/yr calculated at the Pacific and Atlantic sites are similar to those in shallow water deposits but could reflect disturbance during handling. Based on210Pb data from the Panama Basin, sediment from below~ 6cm is mixed at a rate~ 10 × slower than the near-surface sediment to a depth of at least 20 cm. Agreement between234Th predicted mixing rates at the Panama Basin site with210Pb profiles and in-situ experiments with glass bead tracers implies that these rates are real. Although the diffusion of dissolved234Th into deep-sea sediments complicates interpretations,234Thxs distributions in bottom sediments offer a useful adjunct to sediment traps for investigation of particle dynamics near the deep-sea floor.  相似文献   

9.
Disequilibrium between210Po and210Pb and between210Pb and226Ra has been mapped in the eastern and central Indian Ocean based on stations from Legs 3 and 4 of the GEOSECS Indian Ocean expedition.210Po/210Pb activity ratios are less than 1.0 in the surface mixed layer and indicate a residence time for Po of 0.6 years.210Po and210Pb are generally in radioactive equilibrium elsewhere in the water column except at depths of 100–500 m, where Po may be returned to solution after removal from the surface water, and in samples taken near the bottom at a few stations.210Pb excesses relative to226Ra are observed in the surface water but these excesses are not as pronounced as in the North Pacific and North Atlantic. The difference is attributable to a lower flux of210Pb from the atmosphere to the Indian Ocean. Below the main thermocline,210Pb activities increase with depth to a broad maximum before decreasing to lower values near the bottom. Departures from this pattern are especially evident at stations taken in the Bay of Bengal (where210Pb/226Ra activity ratios as low as 0.16 are observed) and near the Mid-Indian Ridge. The data suggest that removal of210Pb at oceanic boundaries, coupled with eddy diffusion along isopycnals, can explain gradients in210Pb near the boundary. Application of a simple model including isopycnal diffusion, chemical removal, production and radioactive decay produces fits the observed210Pb/226Ra gradients for eddy diffusion coeffients of ~ 107 cm2/s. High productivity in surface waters of the Bay of Bengal makes this region a sink for reactive nuclides in the northern Indian Ocean.  相似文献   

10.
By modelling the observed distribution of210Pb and210Po in surface waters of the Pacific, residence times relative to particulate removal are determined. For the center of the North Pacific gyre these are τPo = 0.6years andτPb = 1.7years. The surface ocean τPb is determined by particulate transport rather than plankton settling. The fact that it is about two orders of magnitude smaller than τPb for the deep ocean implies a sharp change in the adsorptive quality of particles during descent through the water column.  相似文献   

11.
210Pb and226Ra profiles have been measured at five GEOSECS stations in the Circumpolar region. These profiles show that226Ra is quite uniformly distributed throughout the Circumpolar region, with slightly lower activities in surface waters, while210Pb varies with depth as well as location or area. There is a subsurface210Pb maximum which matches the oxygen minimum in depth and roughly correlates with the temperature and salinity maxima. This210Pb maximum has its highest concentrations in the Atlantic sector and appears to originate near the South Sandwich Islands northeast of the Weddell Sea. Concentrations in this maximum decrease toward the Indian Ocean sector and then become fairly constant along the easterly Circumpolar Current.Relative to226Ra, the activity of210Pb is deficient in the entire water column of the Circumpolar waters. The deficiency increases from the depth of the210Pb maximum toward the bottom, and the210Pb/226Ra activity ratio is lowest in the Antarctic Bottom Water, indicating a rapid removal of Pb by particulate scavenging in the bottom layer and/or a short mean residence time of the Antarctic Bottom Water in the Circumpolar region.226Ra is essentially linearly correlated with silica and barium in the Circumpolar waters. However, close examination of the vertical profiles reveals that Ba and Si are more variable than226Ra in this region.  相似文献   

12.
Hydrothermal waters collected by “Alvin” from the Galapagos Spreading Center are enriched in222Rn by factors of 50–200 over bottom waters. The226Ra in the same samples, however, is enriched by less than a factor of four over bottom waters. Enrichments of222Rn result primarily from α-recoil from rock surfaces while226Ra enrichments are dominantly produced by high-temperature alteration of cooling ridge volcanics. The abundances of both nuclides exhibit positive correlations with temperature. The data extrapolate to bottom water temperatures and compositions, demonstrating the importance of seawater mixing. Different vents, however, have different mixing lines, and vents with high222Rn have low226Ra. We propose these patterns result from variations in the extent of low-temperature crustal interaction with the hydrothermal fluids. Low-temperature crustal waters can maintain high steady state222Rn contents due to the α-recoil additions to the fluids. The226Ra, however, is strongly adsorbed at low-temperatures resulting in low concentrations of this nuclide in low-temperature crustal waters. Thus, physical mixing of a crustal water component with hydrothermal waters or variable crustal path lengths of the hydrothermal fluids can account for the variable mixing lines and222Rn/226Ra values of the hot springs.The222Rn/226Ra value appears to be a sensitive indicator of low-temperature crustal interaction. Values > 100 have experienced extensive crustal interaction and are indicative of diffuse hydrothermal flow. Values between 1 and 10 are indicative of primary hydrothermal fluids which have not experienced significant interaction with the crust. Values of222Rn/226Ra between 103 and 104 are indicative of interaction of the hydrothermal fluids with sediments. Such values are observed in water samples from the Galapagos hydrothermal mounds.  相似文献   

13.
Profiles of226Ra and dissolved210Pb have been measured at several stations in the Red Sea. At one station in the central Red Sea an expanded profile was measured including226Ra and dissolved and particulate210Pb and210Po. These profiles show several distinct features: (1)226Ra displays a mid-depth maximum of about 13 dpm/100 kg at about 500 m; (2) dissolved210Pb concentrations are uniformly low at about 2 dpm/100 kg with little lateral or vertical variation; (3) the surface-water210Pb excess which is commonly observed in low-latitude open ocean regions is entirely lacking; (4)210Pb and210Po activities are essentially identical to each other in both particulate and dissolved phases although210Po activities appear somewhat lower; (5) about 20% of the210Pb and210Po in the water column residues on particulate matter.Assuming the atmospheric210Pb flux to be in the dissolved form and at the lower level of the normal range i.e. 0.5 dpm/cm2 yr, the residence time of the dissolved Pb is about 1.5 years. However, if the same atmospheric flux is entirely in particulate form, then the residence time of the dissolved Pb is about 5 years. The residence time of Pb in the particulate phase is less than 0.4 years if all the Pb is removed only by sinking particles.  相似文献   

14.
Two ocean profiles from the Peru Basin from regions with different surface productivities were analyzed for total210Pb and201Po to evaluate the influence of particulates in the water column on their distribution. Comparison with a published226Ra profile for the region was made. The profile closest to the coast, where upwelling and productivity are high, shows depletion of210Pb relative to226Ra at all depths, with particularly marked excursions from radioactive equilibrium at the surface and in the bottom water.210Po appears to be deficient relative to210Pb at depth as well. Mean residence times in the deep water, relative to particulate removal from the water column to the sediments, of about 100 years for210Pb and about two years for210Po are indicated. The profile northwest of the upwelling region shows the226Ra210Pb210Po system close to equilibrium at all depths to 1500 m (except for the effect of atmospheric210Pb input seen at the surface.  相似文献   

15.
Strong isotopic fractionation between234U and238U has been noted in deep oil-well brines. The waters are stratigraphically and structurally isolated from fresh-water inflow and have remained stagnant for more than five half-lifes of234U. Excess234U is explained by the234Th alpha-recoil nucleus event.  相似文献   

16.
The thorium isotope content of ocean water   总被引:1,自引:0,他引:1  
232Th concentrations of surface and deep Pacific Ocean waters are 0.01–0.02 dpm/1000 kg (60 pgm/kg). The230Th activity is 0.03–0.13 dpm/1000 kg in surface waters and 0.3–2.7 dpm/1000 kg in deep waters. Chemical residence times based on in situ production from parent isotopes are about the same for230Th and228Th in surface waters (1–5 years) but are ten times greater for230Th in deep waters (10–100 years). Apparently there are additional sources of230Th into deep waters. At MANOP site S manganese nodule tops are enriched in Th isotopes by adsorption of Th from seawater and not by incorporation of Th-rich particulates.  相似文献   

17.
Particulate and soluble,210Pb activities have been measured by filtration of large-volume water samples at two stations in the South Atlantic. Particulate phase210Pb (caught by a 0.4-μm filter) varies from 0.3% of total210Pb in equatorial surface water to 15% in the bottom water. The “absolute activity” of210Pb per unit mass of particulate matter is about 107 times the activity of soluble210Pb per unit mass of water, but because the mass ratio of particulate matter to water is about 10?8, the particulate phase carries only about 10% of the total activity. In Antarctic surface water the particulate phase carries 40% of the total210Pb activity; the absolute activity of this material is about the same as in other water masses and the higher fraction is due to the much larger concentration of suspended matter in surface water in this region.In the equatorial Atlantic the particulate phase210Pb activity increases with depth, by a factor of 40 from surface to bottom, and by a factor of 4 from the Antarctic Intermediate Water core to the Antarctic Bottom Water. This increase with depth is predicted by our previously proposed particulate scavenging model which indicated a scavenging residence time of 50 years for210Pb in the deep sea. A scavenging experiment showed that red clay sediment removes all the210Pb from seawater in less than a week. The Antarctic particulate profile shows little or no evidence of scavenging in this region, which may be due to the siliceous nature of the particulate phase in circumpolar waters. Our previous observation that the210Pb/226Ra activity ratio is of the order of 0.5 in the deep water is further confirmed by the two South Atlantic profiles analyzed in the present work.  相似文献   

18.
On the basis of a dynamic model of a continuous Pb isotope evolution, the variations in the isotopic ratios of uranogenic and thorogenic Pb in a number of young ore deposits, ocean sediments and volcanic rocks from mid-ocean ridges, oceanic islands, island arcs and continents are evaluated. The deviations in the Th/U ratio from its model values are calculated. A model parameterT which indicates a more ancient enrichment in U/Pb (crustal-type Pb sources) or younger enrichment in U/Pb (mantle-type Pb sources) is also calculated. The relative change in the Th/U ratio is close to 1 for mantle-type Pb sources (lowerT values) and decreases for crustal-type Pb sources (higherT values). An interpretation of these changes could be connected with the differences in the U and Th geochemical behaviours in metamorphic processes under the conditions of a deeper (mantle) or crustal source owing to the differences in their valence states. In some cases they have similar (U4+ and Th4+) migration abilities; in others (U6+ and Th4+), considerably different.  相似文献   

19.
226Ra,210Pb and210Po were measured in oceanic profiles at two stations near the Bonin and Kurile trenches.210Po is depleted by 50% on average relative to210Pb in the surface water. In the deep water,210Pb is about 25% deficient relative to226Ra. Based on the deficiency,210Pb residence time with respect to removal by particulate matter was estimated to be less than 96 years in the deep water.210Pb deficiency in the bottom water was significantly greater than that of the adjacent deep water, indicating more effective removal near or at the bottom interface.210Pb,210Po and Th appear to have similar overall rate constants of particulate removal throughout the water column.  相似文献   

20.
The distribution of “ash” (the non-combustible fraction of marine suspended matter) and concentrations of particulate Al, Ca, Fe, Cr, Ni, Cu, Sr and234Th in surface waters and of210Pb,230Th and234Th in two vertical profiles (385–4400 m) of the Indian Ocean are reported.The ash concentrations in surface waters follow the primary productivity pattern, with higher abundances in samples south of 40°S and lower concentrations in the equatorial and subtropical regions. Opaline silica and CaCO3 are the dominant components of the ash in samples from >40°S and from 7°N to 39°S, respectively. Aluminosilicates are only a minor constituent of the surface particulate matter. The metal/Al ratios in the surface particles are significantly higher compared to their corresponding crustal ratios for all the metals analyzed in this work. Comparison of enrichment factors between marine aerosols, plankton and surface oceanic particles, seem to indicate that this high metal/Al ratio in surface particles most likely arises from their involvement in marine biogeochemical cycles. Particulate234Th activity in surface waters parallels the ash abundance implying that its scavenging efficiency from surface waters depends on the particulate concentration.The particulate230Th and210Pb concentration profiles increase monotonously with depth. It is difficult to ascribe this increase to a process other than the in-situ vertical scavenging of230Th and210Pb from the water column by settling particles. The mean settling velocities of particles calculated from the particulate230Th data using a one-dimensional settling model is about 2 × 10?3 cm/s. The settling velocity computed from the particulate230Th profiles does not appear to be compatible with the particulate210Pb depth profiles; one possible explanation to account for the disparity would be that230Th and210Pb are scavenged by different size populations of particles.On the whole, the geographic distribution of particulate matter, their composition and settling velocities in the Atlantic, Pacific and Indian Oceans are similar indicating that they are controlled by quite similar processes in the marine hydrosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号