首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rb-Sr whole-rock isochron ages of gneisses from the Fiskenaesset area are considerably lower (2600–2800 m.y.) than U-Pb zircon ages for the same rocks (2880–2950 m.y.). There is a significant correlation between the isochron ages and the range in Rb/Sr ratios of the samples involved. Higher ages (and lower initial87Sr/86Sr ratios) are obtained for sample collections with a wide range in Rb/Sr ratios. Lower ages (and higher initial ratios) are obtained for sample collections with a narrow range in Rb/Sr ratios. This relationship is explained by a model of local metamorphic Sr isotope homogenisation in restricted rock volumes. This model implies that the individual isochron ages do not date specific geological events. There is a significant inverse correlation between the isochron ages and the corresponding initial ratios. It is probable that the igneous precursors of the gneisses intruded with initial87Sr/86Sr ratios well below 0.701.  相似文献   

3.
Rare-earth element (REE) distribution patterns have been determined for samples of Amîtsoq gneiss from the Godthåb and Isua areas. All have fractionated REE patterns with light REE enrichment, but some leucocratic components show extreme depletion in heavy REE. Various different crystal-liquid equilibria appear to have been involved in their petrogenesis. Fractional crystallization of garnet from a basic or intermediate magma, or partial melting of a basic or intermediate source with a high modal garnet content are considered as possible mechanisms for the generation of the leucocratic components. Anorthosites from Ameralik and Buksefjord show slight light REE enrichment with small or undetectable Eu anomalies, possibly due to crystallization under a high fO2.  相似文献   

4.
Field studies in the vicinity of Saglek Bay, Labrador, demonstrated that it was possible to subdivide the Archaean gneiss complex into distinct lithologic units and erect a geologic chronology similar to that recognized in Godthaabsfjord, West Greenland. The Uivak gneisses are the oldest quartzo-feldspathic suite in the area and are distinguished from a younger gneissic suite in the field, the undifferentiated gneisses, by the presence of porphyritic basic dykes (Saglek dykes) within the Uivak gneisses. The Uivak gneisses range in composition from tonalites to granodiorites, with the two chemically distinct suites recognized: a grey granodioritic suite and an iron-rich plutonic igneous suite which locally intrudes or grades into a grey gneiss which strongly resembles the grey Uivak gneiss. Rb-Sr isotopic studies indicate an age of 3622 ± 72 m.y. (2σ) and initial Sr isotopic composition of 0.7014 ± 0.0008 (2σ) for the Uivak gneiss suite, i.e. grey gneiss plus iron-rich suite (λRb = 1.39 × 10?11 yr?1). The grey Uivak gneiss suite, treated independently, defines a Rb-Sr isochron with an age of 3610 ± 144 m.y. (2σ) and initial Sr isotopic composition of 0.7015 ± 0.0014 (2σ) which is indistinguishable from the age and initial ratio of the total Uivak gneiss suite, grey gneisses plus iron-rich suite. The undifferentiated gneisses define a Rb-Sr isochron with an age of 3121 ± 160 m.y. (2σ), and initial Sr isotopic composition of 0.7064 ± 0.0012 (2σ). The isotopic data support field observations suggesting the undifferentiated gneisses were derived by local remobilization of the grey Uivak gneisses. The Uivak gneisses resemble the Amitsoq gneisses of Godthaabsfjord both chemically and isotopically. The interpretation of the initial Sr isotopic composition of the Uivak gneisses is interpreted as the time of regional homogenization rather than the initial ratio of the plutonic igneous parents of the Uivak gneisses as suggested for the Amitsoq gneisses. Although the undifferentiated gneisses are contemporaneous with the Nuk gneisses of West Greenland, they do not form a well-defined calc-alkaline suite and may not be associated with major crustal thickening in the Labrador Archaean.  相似文献   

5.
UPb age determinations by ion microprobe reveal multiple episodes of zircon growth and recrystallization within a single sample of tonalitic gneiss from the Ancient Gneiss Complex. The oldest episode at3644 ± 4Ma(2σ) produced the dominant type of zircon, characteristically purplish-brown and massive in texture; this probably constitutes unaltered zircon precipitated from the original magma. Recrystallization accompanied (and obscured) by early Pb loss took place within the oldest grains at3504 ± 6Ma and3433 ± 8Ma. Whole new grains grew at these times also. We interpret the post-3644 Ma growth as due to episodic deformational and metamorphic events that transformed the tonalite pluton into foliated banded gneiss. In addition, many grains are visibly overgrown by two layers of younger zircon of different colour and texture, dated at2986 ± 20Ma and2867 ± 30Ma. Euhedral, finely-zoned whole grains having the 2986 Ma age are present also, evidently contributed by very thin felsic veins associated with the nearby Lochiel granite. The age of3644 ± 4Ma combined with precise zircon UPb dating of volcanics from the Onverwacht Group reported elsewhere demonstrates that at least part of the Ancient Gneiss Complex is older than the Barberton Greenstone Belt.  相似文献   

6.
Sm-Nd and Rb-Sr analyses of tektites and other impactites can be used to place constraints on the age and provenance of target materials which were impact melted to form these objects. Tektites have large negative εNd(0) values and are uniform within each tektite group while the εSr(0) are large positive values and show considerable variation within each group. Chemical, trace element, and isotopic compositions of tektites are consistent with production by melting of sediments derived from old terrestrial continental crust. Each tektite group is characterized by a uniform Nd model age,TCHURNd, interpreted as the time of formation of the crustal segment which weathered to form the parent sediment for the tektites: (1) ~1.15 AE for Australasian tektites; (2) ~1.91 AE for Ivory Coast tektites; (3) ~0.9 AE for moldavites; (4) ~0.65 AE for North American tektites, and (5) ~0.9 AE for high-Si irghizites. Sr model ages,TURSr, are variable within each group reflecting Rb-Sr fractionation and in the favorable limit of very high Rb/Sr ratios, approach the time of sedimentation of the parent material which melted to form the tektites. Australasian tektites are derived from ~0.25 AE sediments, moldavites from ~0.0 AE sediments, Ivory Coast tektites from ~0.95 AE sediments. Possible parent sediments of other tektite groups have poorly constrained ages. Our data on moldavites and Ivory Coast tektites are consistent with derivation from the Ries and Bosumtwi craters, respectively. Irghizites are isotopically distinct from Australasian tektites and are probably not related. Sanidine spherules from a Cretaceous-Tertiary boundary clay have initial εNd ~ +2; εSr ~ +5 and are not derived from old continental crust or meteoritic feldspar. They may represent a mixture of basaltic oceanic crust and sediments, implying an oceanic impact. These isotopic results are also consistent with a volcanic origin for the spherules.  相似文献   

7.
Migmatitic gneisses of overall intermediate composition occur at Vikan i Bø, North Norway. A Pb-Pb whole-rock isochron on these Vikan Gneisses yields an age of3,460 ± 70m.y. A Rb-Sr whole-rock isochron on the same rock samples yields an age of2,300 ± 150m.y., and an initial87Sr/86Sr ratio of0.7126 ± 0.0011.The geochemical implications of the discordance of the Pb-Pb and Rb-Sr whole-rock ages are discussed, and a timetable of the geological events in the early history of Lofoten-Vestera?len is proposed.  相似文献   

8.
The relationships between the major terrestrial volatile reservoirs are explored by resolving the different components in the Xe isotope signatures displayed by Harding County and Caroline CO2 well gases and mid-ocean ridge basalts (MORB). For the nonradiogenic isotopes, there is evidence for the presence of components enhanced in the light 124–128Xe/130Xe isotope ratios with respect to the terrestrial atmosphere. The observation of small but significant elevations of these ratios in the MORB and well gas reservoirs means that the nonradiogenic Xe in the atmosphere cannot be the primordial base composition in the mantle. The presence of solar-like components, for example U–Xe, solar wind Xe, or both, is required.For radiogenic Xe generated by decay of short-lived 129I and 244Pu, the 129Xerad/136Xe244 ratios are indistinguishable in MORB and the present atmosphere, but differ by approximately an order of magnitude between the MORB and well gas sources. Correspondence of these ratios in MORB and the atmosphere within the relatively small uncertainties found here significantly constrains possible mantle degassing scenarios. The widely held view that substantial early degassing of 129Xerad and 136Xe244 from the MORB reservoir to the atmosphere occurred and then ended while 129I was still alive is incompatible with equal ratios, and so is not a possible explanation for observed elevations of 129Xe/130Xe in MORB compared to the atmosphere. Detailed degassing chronologies constructed from the isotopic composition of MORB Xe are therefore questionable.If the present estimate for the uranium/iodine ratio in the bulk silicate Earth (BSE) is taken to apply to all interior volatile reservoirs, the differing 129Xerad/136Xe244 ratios in MORB and the well gases point to two episodes of major mantle degassing, presumably driven by giant impacts, respectively  20–50 Ma and  95–100 Ma after solar system origin assuming current values for initial 129I/127I and 244Pu/238U. The earlier time range, for degassing of the well gas source, spans Hf–W calculations for the timing of a moon-forming impact. The second, later impact further outgassed the upper mantle and MORB source. A single event that degassed both the MORB and gas well reservoirs at the time of the moon-forming collision would be compatible with their distinct 129Xerad/136Xe244 ratios only if the post-impact iodine abundance in the MORB reservoir was about an order of magnitude lower than current estimates. In either case, such late dates require large early losses of noble gases, so that initial inventories acquired throughout the Earth must have been substantially higher.The much larger 129Xerad/136Xe244 ratio in the well gases compared to MORB requires that these two Xe components evolve from separate interior reservoirs that have been effectively isolated from each other for most of the age of the planet, but are now seen within the upper mantle. These reservoirs have maintained distinct Xe isotope signatures despite having similar Ne isotope compositions that reflect similar degassing histories. This suggests that the light noble gas and radiogenic Xe isotopes are decoupled, with separate long-term storage of the latter. However, without data on the extent of heterogeneities within the upper mantle, this conclusion cannot be easily reconciled with geophysical observations without significant re-evaluation of present noble gas models. Nevertheless the analytic evidence that two different values of 129Xerad/136Xe244 exist in the Earth appears firm. If the uranium/iodine ratio is approximately uniform throughout the BSE, it follows that degassing events from separate reservoirs at different times are recorded in the currently available terrestrial Xe data.  相似文献   

9.
Rare earth element (REE) plus yttrium (Y) patterns of modern seawater have characteristic features that can be used as chemical fingerprints. Reliable proxies for marine REE+Y chemistry have been demonstrated from a large geological time span, including Archaean banded iron formation (BIF), stromatolitic limestone, Phanerozoic reef carbonate and Holocene microbialite.Here we present new REE+Y data for two distinct suites of early Archaean (ca. 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland, whose interrelationships, if any, have been much debated in recent literature. The first suite comprises magnetite-quartz BIF, magnetite-carbonate BIF and banded magnetite-rich quartz rock, mostly from the Isua Greenstone Belt (IGB). The REE+Y patterns, particularly diagnostic anomalies (Ce/Ce*, Pr/Pr*), are closely related to those of published seawater proxies. The second suite includes banded quartz-pyroxene-amphibole±garnet rocks with minor magnetite from the so-called Akilia Association enclaves (in early Archaean granitoid gneisses) of the coastal region, some 150 km southwest of the IGB. Rocks of this type from one much publicised and highly debated locality (the island of Akilia) have been identified by some workers [Nature 384 (1996) 55; Geochim. Cosmochim. Acta 61 (1997) 2475] as BIF-facies, and their 13C-depleted signature in trace graphite interpreted as a proxy for earliest life on Earth. However, REE+Y patterns of the Akilia Association suite (except for one probably genuine magnetite-rich BIF from Ugpik) are inconsistent with a seawater origin. We agree with published geological and geochemical (including REE) work [Science 296 (2002) 1448] that most of the analysed Akilia rocks are not chemical sediments, and that C-isotopes in such rocks therefore cannot be used as biological proxies.Application of the REE+Y discriminant for the above two rock suites has been facilitated in this study by the use of MC-ICP technique which yields a more complete and precise REE+Y spectrum than was available in many previous studies.  相似文献   

10.
The tectonic activities during late Archaean-earlyProterozoic is the crisis during the process of crustevolution. The tectonic kinematical mode and dynamicprocess of metamorphic complexes formed is the keyproblem in geosciences[1—7], related to many importantgeological events, such as the substitute of dynamicalsystems and the corresponding relationship betweendeep crust-mantle structure and upper regional stressfield. The predecessors have made a great deal ofstudy on this topic and achieved…  相似文献   

11.
Radiocarbon dates obtained on organic materials overridden by a gelifluction lobe allow some estimate of past gelifluction rates for a site near sea level in northern Labrador. The calculated mean gelifluction rate for the last 400 years is in the order of 8 mm yr?1, somewhat higher than the average gelifluction rate described from other locations in the Canadian Arctic. The lobe contains two lithostratigraphic units: an inner diamicton, probably representing a buried gelifluction lobe, overlain by a silt/clay unit which may have been emplaced abruptly as a solifluction sheet. Mean creep rates for these units were in the order of 5 mm yr?1 and 15 mm yr?1 respectively. The area is presently subsiding, and transgressive beach material overlies terrestrial organics which are approximately 300 years old.  相似文献   

12.
SmNd isotopic data indicate that differential REE mobility occurred on a whole-rock scale during transitional amphibolite- to granulite-facies regional metamorphism ( 700°C, 7 kbar) in early Archaean rocks ( 3930 Ma) of the Napier Complex of Enderby Land, Antarctica. The degree of mobility is independent of metamorphic grade but correlates directly with development of tectonic fabric. Whole-rock samples with D3-M3 internal fabrics lie along an array corresponding to an age of 2410 ± 100Ma, whereas samples preserving only earlier fabrics preserve an older, albeit imprecisely defined isochron age. In contrast to a widely held belief, such changes did not require the presence of a large hydrous fluid flux. If the mechanism responsible for SmNd resetting at this locality (where TCHUR ages range from 1990 Ma to 6090 Ma) is more widespread than is currently recognised, isolated SmNd model ages, particularly in complex terrains should be treated with caution.  相似文献   

13.
Metasedimentary and metavolcanic rocks from the Archaean of West Greenland have been examined for evidence of crustal components greater than 3.8 Ga in age and for their compatibility with the presently adopted bulk Earth Sm-Nd parameters. Sm-Nd isotopic data have been obtained for the garbenschiefer metagabbro unit, metasediments from the Isua supracrustal belt, gneisses interior to the Isua belt and metasediments from the Malene supracrustal belt.Using estimates of emplacement age (T) of between 3.77 and 3.67 Ga for the parental volcanics to the garbenschiefer unit, initial143Nd/144Nd ratios yield positiveεNdT values between +1.0 and +3.1 (relative to the CHUR parameters) for seven out of eight samples. Model Sm-Nd ages for the Isua gneisses and metasediments are only compatible with their estimated stratigraphic ages if their sources were ca.+2εNd relative to CHUR at those times. Similarly, model Sm-Nd ages for the Malene samples are only compatible with stratigraphic age constraints when based on a source evolution with positiveεNdT. Implications of these results for the early development of the Earth's mantle are discussed.  相似文献   

14.
Major element data and Rb, Sr and87Sr/86Sr analyses for seven spinel lherzolite xenoliths and their Recent host basalt from Victoria, Australia, are presented. The exotic nature of the xenoliths is indicated by a wide spread in87Sr/86Sr values (0.7035–0.7076) compared with the basalt (0.7041). Five of the lherzolites provide evidence of a thermal event in the mantle 650 m.y. ago. Equilibration temperatures calculated from the compositions of the lherzolite phases (ca. 1050°C) apparently relate to this event. Estimates of the local geothermal gradient suggest temperatures of less than 700°C in the source region before eruption of the lherzolites.Isotopic analyses of the lherzolite minerals show that orthopyroxene contains more radiogenic Sr than coexisting olivine and clinopyroxene in three of the xenoliths. The87Sr/86Sr relationships between clinopyroxene and orthopyroxene suggest that internal isotopic disequilibrium has existed in the source region for up to 550 m.y.  相似文献   

15.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

16.
The Labrador Trough is a linear fold-belt marking the junction of the Superior and Churchill structural provinces in northern Quebec. Gravity profiles across the trough are characterized by gently decreasing anomalies over the Superior Province reaching a minimum beneath the trough and thence increasing abruptly over the Churchill Province to a level some 15 mgal higher than the Superior. Superimposed on this higher level are several broad maxima parallel to the trough, one of which corresponds to an extensive outcrop of migmatites.The gravity profiles may be interpreted in terms of a relatively elevated Conrad discontinuity beneath the Churchill Province isostatically compensated by a thickened lower crust. Such a model is consistent with basement reactivation following collision of the Superior and Churchill continental plates. Collision results in crustal thickening by ductile flow in the upper mantle and consequent partial melting in the lower crust leads to differentiation of the crust into a refractory lower part and potash-rich upper part separated by a zone of migmatites.The geological history of the Labrador Trough, and its present-day structure as deduced from gravity studies, is consistent with a sequence of events involving the gradual closure of a small ocean dividing the Superior and proto-Churchill crustal plates in Aphebian times. The closure was effected by subduction beneath the Churchill culminating in collision during the Hudsonian Orogeny and the formation of the present structural configuration after deep erosion.  相似文献   

17.
Estimates of the chemical composition of the Archaean mantle, derived from elemental abundance ratios in komatiites combined with ultramafic xenolith data, support a model of a multistage heterogeneous accretion history of the Earth and synchronous core formation, 4.6 Ga ago.Most refractory lithophile element abundance ratios in komatiites and xenoliths are close to chondritic except for V/Ti and Ca/Al. Depletion of vanadium is likely due to its partial incorporation into the iron core; whereas fractionation of Ca/Al observed in Archaean Al-undepleted komatiites (1.20 times chondrites) and in some modern fertile spinel lherzolite xenoliths (1.15 times chondrites) could be due to small amounts of garnet (rich in Al but poor in Ca) segregation into the lower mantle during partial or complete melting of the upper mantle in the very early history of the Earth. However, this process may have had only a small effect on the overall chemical composition of the upper mantle.Simultaneous occurrence of early Archaean Al-undepleted (Al/Ti chondrites) and Al-depleted (Al/Ti 0.5 chondrites, and depletion of Sc and heavy REE) peridotitic komatiites in the Barberton area, S. Africa, and late Archaean Newton Township, Canada, argue against derivation of peridotitic komatiites from a circum-global magma ocean. Garnet separation from a mantle diapir which intersects the solidus at great depth ( 200 km) in a hotter early Archaean mantle could explain the chemical characteristics of Al-depleted komatiites. Alternatively, these two types of komatiites could have been derived from different layers in a fractionated mantle. A limited amount of Hf isotope data for Archaean komatiites seems to suggest that both mechanisms are important. This chemically and minerallogically layered mantle, if it existed, was homogenized by mantle convection after early Archaean times.Constant P2O5/TiO2, Ni/Mg, Co/Mg, Fe/Mg ratios (siderophile/lithophile) and PGE abundances, estimated for the mantle sources of komatiites from Archaean to modern times, strongly argue against continuous growth of the Earth's core since the early Archaean.Extensive crustal contamination might have been involved in the generation of Archaean-early Proterozoic siliceous high magnesian basalts with “boninite affinity”. However, involvement of chemically modified ancient continental lithosphere may also be important in the generation of these basalts.  相似文献   

18.
40Ar/39Ar age determinations have been carried out on eight samples of melt rocks and one of the maskelynite from Mistastin Lake impact crater, Labrador. The observed40Ar* evolution spectra of the impact melts fall into distinct groups which correlate with petrographic variations. The release patterns of six of the melt rock samples define an age plateau in the range 34–41 m.y.; the other two have complex spectra which indicate incomplete equilibration of inclusions. Four of the samples with well-defined plateaux exhibit a high-temperature sag in their40Ar/39Ar ratio similar to that observed in some lunar samples. Maskelynite gives a partially overprinted spectrum which rises monotonically to a final age near 700 m.y., approximately half the age of the country rocks. The data from the melt samples are interpreted as indicating an age of 38 ± 4 m.y. for the Mistastin Lake impact event. Previously, it had been considered that this crater was 202 ± 25 m.y. old.  相似文献   

19.
We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号