首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The contents of spallogenic53Mn and target elements for its production were determined in 80- to 400-mg samples from 13 different locations of the LL6 chondrite St. Severin, along the 34.8-cm drill core AIII. The53Mn content increases from the surface to the center of the stone by ≈30%. The variation with depth is satisfactorily described by several models, presuming that appropriate primary and secondary particle fluxes are chosen. The53Mn saturation activities (53Mn*) are linearly correlated with the spallogenic3He/21Ne and22Ne/21Ne ratios, which suggests the possibility to eliminate uncertainties in the determination of53Mn cosmic ray exposure ages arising from depth effects and terrestrial residence times.  相似文献   

3.
Mass spectrometric analyses of neutron-irradiated targets of natural magnesium yield cross sections of59 ± 14,160 ± 8, and11.0 ± 3.3mb for20Ne,21Ne, and22Ne, respectively, at 14.1 MeV and of94 ± 8,152 ± 12, and13.0 ± 2.0mb at 14.7 MeV. With the incorporation of these cross sections, calculations modeling cosmic-ray interactions in stony meteoroids of radii 20 and 26 cm predict that between the surface and center the22Ne/21Ne ratio falls more than 10% while the21Ne production rate rises about 30%. The reaction24Mg(n,α)21Ne predominantly controls these trends: the22Ne/21Ne ratio due to magnesium decreases over 15% while that due to silicon remains constant with increasing depth. The calculations are compared with published neon measurements for the Keyes and St. Séverin meteorites.  相似文献   

4.
A systematic calibration of the production rate of one specific cosmic-ray-produced nuclide in chondrites, that of21Ne, was achieved by using four independent methods:P21(1.11) = 0.507 ± 0.039, 0.302 ± 0.013, 0.312 ± 0.017and0.292 ± 0.019 (in units of 10?8 cm3 STP/g My) based on26Al-age,53Mn-age,81Kr-83Kr and22Na-22Ne methods, respectively. These production rates are all normalized to a shielding parameter ratio22Ne/21Ne= 1.11 and to the chemical composition of L chondrites. The results obtained by the latter three methods are in good agreement, but they disagree in a systematic way with the26Al-age calibration. Based on these results, we recommend a valueP21(1.11) = 0.31 and a production rate equation:P21 = 4.845 P21 (1.11) F[21.77(22Ne/21Ne) ? 19.32]?, whereF = 1.00 for L and LL, andF = 0.93 for H chondrites, for the calculation of cosmic ray exposure ages on the basis of Ne concentrations. In an attempt to assess possible causes for this discrepancy, we discuss the26Al half-life measurements, we evaluate effects resulting from pre-irradiation of meteorites, and we discuss the evidence regarding the constancy of the cosmic ray flux in the past, in the light of some recent astronomical observations.  相似文献   

5.
Three physical quantities define the essentials of the cosmic ray exposure history of a sample of an iron meteorite: (1) the cosmic ray exposure age T, (2) the pre-atmospheric “size” S of the irradiated body, and (3) the location, i.e. the “depth” D, of the samples within the body. To establish these quantities for a given sample three independent quantities must be determined experimentally. In the present work T is ascertained by the 41K/40K method and the 4He and 21Ne concentrations (C4 and C21) are measured by the isotope dilution method. Signer and Nier's evaluation of the rare gas distribution in the meteorite Grant and the measured exposure age for this meteorite provide the relationships allowing to ascertain for any meteorite the quantities S and D from the 21Ne production rate (P21 = C21/T) and the 4He/21Ne ratio.Earlier measurements have provided data on the isotopic composition of potassium in 74 different iron meteorites. New rare gas measurements are reported for some 40 samples. Results on the age, size and depth are obtained for almost 60 samples. These data suggest that Signer and Nier's model is well suited for describing not only the rare gas distribution in a single selected meteorite (Grant) but also the exposure histories of the great majority of all irons. For a few samples, however, secondary breakups of the meteoroid and a two- or multiple-stage irradiation must be invoked. Further measurements are proposed for testing and, possibly, refining the still somewhat uncertain relationships between the abundances of cosmogenic nuclides and the quantities T, S, and D in very large meteorites.Histograms are presented showing the age distributions for irons of different chemical groups and of different size ranges.The feasibility and the relative merits of other methods for the determination of T, S, and D are discussed.  相似文献   

6.
We have performed systematic analyses of both cosmogenic 3He (3Hec) and cosmogenic 21Ne (21Nec) in ultramafic xenoliths from Central Asia and in a quartz sample from Antarctica. Five xenoliths, which show no or insignificant 21Nec excesses, were used to estimate the initial 4He/3He ratio of 90,470 in the subcontinental lithospheric mantle under the Baikal extension zone. Seven xenoliths show large 21Ne/22Ne anomalies ranging up to 0.204 and 4He/3He down to 31,000, due to the presence of cosmogenic 21Ne and 3He. The (3He/21Ne)c ratio is 1.41 ± 0.22 in the xenoliths and 2.76 in the quartzite. This difference is due to the dependence of the 21Nec production rate on the elemental composition of the target material. We estimated the 3Hec and 21Nec production rates at different locations worldwide and calculated the 3Hec and 21Nec exposure ages. These ages range between 7100 and 28,000 years for the xenoliths, and we determined their relative positions within the volcanic tuff layer. The mean 3Hec and 21Nec exposure ages of the quartz sample are 1.35 ± 0.07 and 2.21 ± 0.12 Ma, respectively. This difference is most probably related to 3Hec diffusive losses from the quartz mineral grains, even at low temperatures, due to the relatively high diffusion coefficient for cosmogenic 3He.  相似文献   

7.
Measurements of cosmic-ray produced53Mn are reported for a series of lunar surface samples down to a depth of 416 g/cm2. These results clearly illustrate the decrease in activity with depth as the incident galactic cosmic rays are absorbed. Below 60 g/cm2 the production rate decreases exponentially with a mean length, λ, of about 220 g/cm2. These results indicate that, at the Apollo 15 site, the lunar regolith has been unmixed, on a meter scale, for the last 5 my. The neutron activation technique for53Mn, which allowed samples smaller than 200 mg to be used for these measurements, is described.  相似文献   

8.
Cosmogenic neon in sodium-rich oligoclase feldspar from the ordinary chondrites St. Severin and Guaren?a is characterized by an unusually high22Ne/21Ne = 1.50 ± 0.02. This high ratio is due to the cosmogenic22Ne/21Ne production ratio in sodium which is 2.9 ± 0.3, two to three times the production ratio in any other target element. The relative production rate of21Ne per gram sodium is one quarter the production rate per gram magnesium. The striking enrichment of22Ne relative to21Ne in sodium arises from enhanced indirect production from23Na via22Na.The unusual composition of cosmogenic neon in sodium and sodium-rich minerals explains the high22Ne/21Ne ratios observed in inclusions of the Allende carbonaceous chondrite, and observed during low-temperature extraction of neon from ordinary chondrites. The isotopic composition of cosmogenic neon released during the stepwise heating of a trapped gas-rich meteorite containing sodium-rich phases can be expected to vary, and use of a constant cosmogenic neon composition to derive the composition of the trapped gas may not be justified. Preferential loss of this22Ne-enriched cosmogenic neon from meteoritic feldspar can result in a 2–3% drop in the measured cosmogenic22Ne/21Ne ratio in a bulk meteorite sample. This apparent change in composition can lead to overestimation of the minimum pre-atmospheric mass of the meteorite by a factor of two.  相似文献   

9.
Cosmogenic14C has been measured in 12 chondrites and the stone phase of the mesosiderite Bondoc. For the chondrites analysed the activities vary between 44 and 72 dpm/kg; the low value of (4.5 ± 0.9) dpm/kg for Bondoc is essentially due to its large pre-atmospheric size and not to a terrestrial age of several half-lives of14C.In eight cases39Ar in the metal phase from the same meteorite specimens had been measured previously. The results are combined to derive the pre-atmospheric radiiR0 of the meteoroids and depth of burial of the samples investigated. Values ofR0 between 35 and 82 cm are obtained; of 14 samples ten came from a depth of 10 cm or less. The preponderance of samples from shallow depths is ascribed to asymmetrical ablation losses of the meteoroids during their passage through the atmosphere.A compilation of all published14C concentrations in chondrites shows that the variations between different specimens from thesame meteorites are almost as large as those for samples fromdifferent meteorites. Thus, there is no need to invoke different orbits of the meteoroids and a strong spatial gradient in the primary cosmic-ray intensity to explain variations of low-energy-produced cosmogenic nuclides in different meteorites.  相似文献   

10.
Combining cosmogenic 3He and 21Ne (3Hec and 21Nec) measurements on both pyroxene and olivine from the Pleistocene Bar Ten flows (85–107 ka) greatly increases our ability to evaluate the accuracy of 3Hec and 21Nec production rates and, therefore, 3Hec and 21Nec surface exposure ages. Comparison of 3Hec and 21Nec age-pairs yielded by experimentally determined production rates and composition-based model calculations indicates that the former give more accurate surface exposure ages than the latter in this study. However, experimental production rates should be adjusted to the composition of the minerals being analyzed to obtain the best agreement between 3Hec and 21Nec ages for any given sample. 21Nec/3Hec values are 0.400 ± 0.029 and 0.204 ± 0.014 for olivine and pyroxene, respectively, in Bar Ten lava flows, in agreement with previously published values, and indicate that 21Nec/3Hec in olivine and pyroxene is not affected by erosion and remains constant with latitude, elevation, and time (up to 10 Myr). Samples with 21Nec/3Hec that do not agree with these values may indicate the presence of non-cosmogenic helium and/or neon. The neon three-isotope diagram can also indicate whether or not all excess neon in mineral separates comes from cosmogenic sources. An error-weighted regression for olivine defines a spallation line [y = (1.033 ± 0.031)x + (0.09876 ± 0.00033)], which is indistinguishable from that for pyroxene (Schäfer et al., 1999). We have derived a production rate of 25 ± 8 at/g/yr for 21Nec in clinopyroxene (En43–44) based on the 40Ar/39Ar age of the upper Bar Ten flow. Our study indicates that the production rate of 21Nec in olivine may be slightly higher than previously determined. Cosmogenic 3He and 21Ne remain extremely useful, particularly when paired, in determining accurate eruption ages of young olivine- and pyroxene-rich basaltic lava flows.  相似文献   

11.
Measurements of radioactive in situ-produced cosmogenic nuclide concentrations in surficial material exposed to cosmic rays allow either determining the long-term denudation rate assuming that the surface studied has reached steady-state (where production and losses by denudation and radioactive decay are in equilibrium) (infinite exposure time), or dating the initiation of exposure to cosmic rays, assuming that the denudation and post-depositional processes are negligible. Criteria for determining whether a surface is eroding or undergoing burial as well as quantitative information on denudation or burial rates may be obtained from cosmogenic nuclide depth profiles. With the refinement of the physical parameters involved in the production of in situ-produced cosmogenic nuclides, a unique well-constrained depth profile now permits determination of both the exposure time and the denudation rate affecting a surface. In this paper, we first mathematically demonstrate that the exponential decrease of the in situ-produced 10Be concentrations observed along a depth profile constrains a unique exposure time and denudation rate when considering both neutrons and muons. In the second part, an improved chi-square inversion model is described and tested in the third part with actual measured profiles.  相似文献   

12.
Stable cosmogenic isotopes such as 3He and 21Ne are useful for dating of diverse lithologies, quantifying erosion rates and ages of ancient surfaces and sediments, and for assessing complex burial histories. Although many minerals are potentially suitable targets for 3He and 21Ne dating, complex production systematics require calibration of each mineral–isotope pair. We present new results from a drill core in a high-elevation ignimbrite surface, which demonstrates that cosmogenic 3He and 21Ne can be readily measured in biotite and hornblende. 21Ne production rates in hornblende and biotite are similar, and are higher than that in quartz due to production from light elements such as Mg and Al. We measure 21Nehbl/21Neqtz = 1.35 ± 0.03 and 21Nebio/21Neqtz = 1.3 ± 0.02, which yield production rates of 25.6 ± 3.0 and 24.7 ± 2.9 at g? 1 yr? 1 relative to a 21Neqtz production rate of 19.0 ± 1.8 at g? 1 yr? 1. We show that nucleogenic 21Ne concentrations produced via the reaction 18O(α,n)21Ne are manageably small in this setting, and we present a new approach to deconvolve nucleogenic 21Ne by comparison to nucleogenic 22Ne produced from the reaction 19F(α,n)22Ne in F-rich phases such as biotite. Our results show that hornblende is a suitable target phase for cosmogenic 3He dating, but that 3He is lost from biotite at Earth surface temperatures. Comparison of 3He concentrations in hornblende with previously measured mineral phases such as apatite and zircon provides unambiguous evidence for 3He production via the reaction 6Li(n,α)3H  3He. Due to the atypically high Li content in the hornblende (~ 160 ppm) we estimate that Li-produced 3He represents ~ 40% of total 3He production in our samples, and must be considered on a sample-specific basis if 3He dating in hornblende is to be widely implemented.  相似文献   

13.
The cosmic ray exposure ages of 16 iron meteorites were determined by the41K/40K-4He/21Ne method. The ages measured in the present and in previous experiments are summarized and presented in form of various histograms characterizing the age distributions of the different chemical groups separately. Age clustering at 650 Ma (mega years) is typical for the group IIIAB. Age clustering at 400 Ma is observed for the IVA irons. Quasi-continuous age distributions are found for the groups IA, IIA, IIB, IVB and for the anomalous irons. The following interpretation is offered. The IIIA and IIIB irons have initially been core material of the same parent asteroid and were ejected in consequence of a single impact event about 650 Ma ago. The IVA irons represent core material of another asteroid which was hit and partially disrupted in consequence of an impact event about 400 Ma ago. The group IA exhibits meteorites with ages between 200 and 1200 Ma. The quasi-continuous character of this age distribution and cosmochemical evidence indicate for these irons a raisin-bread-like character of their initial distribution within the silicate mantle of their parent asteroid. In consequence of several or, perhaps, of many crater-forming impact events the mantle material was gradually destructed and ejected. In the age distribution of the IIA hexahedrites, ages <300 Ma predominate and ages >600 Ma seem to be missing. In attempting to understand this, the possibility must be taken into consideration that the mean life-time of hexahedrites in the interplanetary space might be shorter than that of other irons. The cause might be that the hexahedrite single crystals are perhaps easier cleavable in the space environment. A similar kind of selective mass wastage appears also to be the cause for the absence of stone meteorites with high exposure ages.  相似文献   

14.
Cosmic-ray-produced26Al in iron meteorites has been measured by low-level γγ-coincidence counting. The26Al activities, in dpm/kg, are: Aroos3.0 ± 1.0, Braunau2.6 ± 0.5. Kayakent4.6 ± 1.5, N'Goureyma4.4 ± 1.1, Okahandja3.6 ± 0.9, Treysa4.0 ± 0.5. Exposure ages based on26Al/21Ne are in agreement, within experimental error(±20%), with those based on36Cl/36Ar and39Ar/38Ar but the ages based on40K/41K are higher by about 50%. The difference in exposure ages is probably caused by a real change of the cosmic ray intensity in the inner solar system.  相似文献   

15.
The Apollo 12 mission brought back sections of the Surveyor 3 vehicle suitable for mass spectrometric studies of implanted solar wind and solar cosmic rays. Using this method, we have determined an average solar wind 4He flux of 6.1 × 106 ions/cm2 sec for the 31 months of exposure. We have also measured 4He/3He= 2700 ± 50;4He/20Ne= 410 ± 30;20Ne/22Ne= 13.5 ± 0.2;20Ne/36Ar= 24.5 ± 2.5; and 36Ar/38Ar= 5.41 ± 0.20. These measurements provide solar wind values averaged over considerably longer periods of time than the Apollo Solar Wind Composition experiments and suggest that the short term SWC measurements during a period of high solar activity may not be a reliable measure of average solar wind composition.  相似文献   

16.
Abundances and isotopic compositions of all the stable noble gases have been measured in 19 different depths of the Apollo 15 deep drill core, 7 different depths of the Apollo 16 deep drill core, and in several surface fines and breccias. All samples analyzed from both drill cores contain large concentrations of solar wind implanted gases, which demonstrates that even the deepest layers of both cores have experienced a lunar surface history. For the Apollo 15 core samples, trapped4He concentrations are constant to within a factor of two; elemental ratios show even greater similarities with mean values of4He/22Ne= 683±44,22Ne/36Ar= 0.439±0.057,36Ar/84Kr= 1.60±0.11·103, and84Kr/132Xe= 5.92±0.74. Apollo 16 core samples show distinctly lower4He contents,4He/22Ne(567±74), and22Ne/36Ar(0.229±0.024), but their heavy-element ratios are essentially identical to Apollo 15 core samples. Apollo 16 surface fines also show lower values of4He/22Ne and22Ne/36Ar. This phenomenon is attributed to greater fractionation during gas loss because of the higher plagioclase contents of Apollo 16 fines. Of these four elemental ratios as measured in both cores, only the22Ne/36Ar for the Apollo 15 core shows an apparent depth dependance. No unambiguous evidence was seen in these core materials of appreciable variations in the composition of the solar wind. Calculated concentrations of cosmic ray-produced21Ne,80Kr, and126Xe for the Apollo 15 core showed nearly flat (within a factor of two) depth profiles, but with smaller random concentration variations over depths of a few cm. These data are not consistent with a short-term core accretion model from non-irradiated regolith. The Apollo 15 core data are consistent with a combined accretion plus static time of a few hundred million years, and also indicate variable pre-accretion irradiation of core material. The lack of large variations in solar wind gas contents across core layers is also consistent with appreciable pre-accretion irradiation. Depth profiles of cosmogenic gases in the Apollo 16 core show considerably larger concentrations of cosmogenic gases below ~65 cm depth than above. This pattern may be interpreted either as an accretionary process, or by a more recent deposition of regolith to the upper ~70 cm of the core. Cosmogenic gas concentrations of several Apollo 16 fines and breccias are consistent with ages of North Ray Crater and South Ray Crater of ~50·106 and ~2·106 yr, respectively.  相似文献   

17.
A comprehensive study of the cosmic-ray exposure history of five ordinary chondrites from China was carried out using measurements of the noble gas isotopic abundances and10Be concentrations. The following average cosmic-ray exposure ages, based on cosmogenic21Ne and on81KrKr dating were obtained: Zhaodong (L4) — 15.7 ± 3.0 m.y., Nan Yang Pao (L6) — 48 ± 10.0 m.y., Guangrao (L6) — 16.8 ± 3.5 m.y., and Lunan (H6) — 26.7 ± 5.0 m.y. The H5 chondrite Zaoyang was exposed for only 0.90 ± 0.12 m.y. to galactic cosmic rays as calculated from the10Be activity and from the low amounts of cosmic-ray-produced noble gases. The Zhaodong chondrite contains large amounts of80Kr and82Kr produced by neutron capture of bromine. From the high slowing down density for neutrons we derive a preatmospheric mass of more than 1800 kg for this meteorite.  相似文献   

18.
We use a numerical model describing cosmogenic nuclide acquisition in sediment moving through the upper Gaub River catchment to evaluate the extent to which aspects of source area geomorphology and geomorphological processes can be inferred from frequency distributions of cosmogenic 21Ne (21Nec) concentrations in individual detrital grains. The numerical model predicts the pathways of sediment grains from their source to the outlet of the catchment and calculates the total 21Nec concentration that each grain acquires along its pathway. The model fully accounts for variations in nuclide production due to changes in latitude, altitude and topographic shielding and allows for spatially variable erosion and sediment transport rates. Model results show that the form of the frequency distribution of 21Nec concentrations in exported sediment is sensitive to the range and spatial distribution of processes operating in the sediment's source areas and that this distribution can be used to infer the range and spatial distribution of erosion rates that characterise the catchment. The results also show that lithology can affect the form of the 21Nec concentration distribution indirectly by exerting control on the spatial pattern of denudation in a catchment. Model results further indicate that the form of the distribution of 21Nec concentrations in the exported sediment can also be affected by the acquisition of 21Nec after detachment from bedrock, in the diffusive (hillslope) and/or advective (fluvial) domains. However, for such post‐detachment nuclide acquisition to be important, this effect needs to at least equal the nuclide acquisition prior to detachment from bedrock. Copyright © 2009 John Wiley and Sons, Ltd.  相似文献   

19.
Production rates of22Na (T1/2 = 2.6years) from aluminium by the action of cosmic rays are measured at the Mont Blanc (altitude 4600 m), the Aiguille du Midi (3840 m), and the Col du Lautaret (2070 m). They are2.3 ± 0.5,1.8 ± 0.3,and0.77 ± 0.18 atoms min?1 kg?1, respectively, in good agreement with the calculated production rates, 2.4, 1.7 and 0.6 atoms min?1 kg?1, respectively, at the three stations.Production rates of24Na (T1/2 = 15hours) from aluminium and magnesium are also measured at the Aiguille du Midi; the observed rates of3.4 ± 0.4and6.0 ± 1.7 atoms min?1 kg?1, respectively, agree well with the theoretically expected rates of 3.7 and 5.6 atoms min?1 kg?1.The production rates of3H,7Be,10Be,14C,22Na,26Al,36Cl,37Ar,39Ar,53Mn,54Mn, and55Fe in terrestrial rocks by the action of cosmic rays are calculated in order to show the possibility of applying the measurements of these cosmogenic radionuclides to the earth science.  相似文献   

20.
Because the intensity and energy spectrum of the cosmic ray flux are affected by atmospheric depth and geomagnetic-field strength, cosmogenic nuclide production rates increase considerably with altitude and to a lesser degree with latitude. The scaling methods used to account for spatial variability in production rates assume that all cosmogenic nuclides have the same altitude dependence. In this study we evaluate whether the production rates of cosmogenic 36Cl, 3He and 21Ne change differently with altitude, which is plausible due to the different threshold energies of their production reactions. If so, nuclide-specific scaling factors would be required.Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3°S). Altitude dependence of relative production rates was assessed in two ways: by determination of concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. The latter accounts for characteristics of 36Cl that the stable nuclides 3He and 21Ne do not possess (radioactive decay, high sensitivity to mineral composition and significant contributions from production reactions other than spallation). All ratios overlap within error over the entire transect, and altitudinal variation in relative production rates is not therefore evident. This suggests that nuclide-specific scaling factors are not required for the studied nuclides at this low-latitude location. However, because previous studies have documented anomalous altitude-dependent variations in 3He production at mid-latitude sites, the effect of latitude on cross-calibrations should be further evaluated.We determined cosmogenic 21Ne/3He concentration ratios of 0.1864 ± 0.0085 in pyroxenes and 0.377 ± 0.018 in olivines, agreeing with those reported in previous studies.Despite the absence of independently determined ages for the studied lava surfaces, the consistency in the dataset should enable progress to be made in the determination of the production rates of all three nuclides as soon as the production rate of one of the nuclides has been accurately defined.To our knowledge this is the first time that 36Cl has been measured in pyroxene. The Cl extraction method was validated by measuring 36Cl in co-existing plagioclase phenocrysts in one of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号