首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
The temperatures induced in crystalline calcite (CaCO3) upon planar shock compression (95-160 GPa) are reported from two-stage light gas gun experiments. Temperatures of 3300-5400 K are obtained by fitting six-channel optical pyrometer radiances in the 450-900 nm range to the Planck gray-body radiation law. Thermodynamic calculations demonstrate that these temperatures are some 400-1350 K lower than expected for vibronic excitations of the lattice with a 3R/mole-atom specific heat (R is gas constant). The temperature deficit along the Hugoniot is larger than that expected from only melting. In addition to melting, it appears likely that shock-induced decomposition of calcite occurs behind the shock front. We modeled disproportionation of calcite into CaO (solid) plus CO2 (gas). For temperature calculations, specific heat at constant volume for 1 mole of CO2 is taken to be 6.7R as compared to 9R in the solid state; whereas a mole of calcite and a mole of CaO have their solid state values 15R and 6R, respectively. Calculations suggest that the calcite decomposes to CaO and CO2 at ∼110±10 GPa along the Hugoniot. Recent reanalysis of earlier VISAR measurements of particle velocity profiles [1] indicates that calcite shocked to 18 GPa undergoes disproportionation at much lower pressures upon isentropic expansion.  相似文献   

2.
The phase diagram for calcite (CaCO3) is re-evaluated in relation to dynamic compression and following release from shock. Available shock compression data on Hugoniot dynamic measurements, analysis of recovered samples, and observation at terrestrial impact sites are compared with theoretically derived equations of state (EOS) for CaCO3 and its decomposition products CaO and CO2. The study results in a refined phase diagram for CaCO3 in which the major change is the extension of the liquid field of CaCO3. A general outcome of this analysis is that release of CO2 from naturally shocked carbonates to the atmosphere is (grossly) overestimated if based on the calcite phase diagram constructed from thermodynamic equilibrium conditions.  相似文献   

3.
Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high‐resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave). We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations. We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone than mixing of vadose and phreatic water. We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation because mixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We report new results of shock recovery experiments on single crystal calcite. Recovered samples are subjected to thermogravimetric analysis. This yields the maximum amount of post-shock CO2, the decarbonization interval, ΔT, and the energy of association (or vaporization), ΔEV, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of 10to 70GPa. The latter pressure should be considered a lower bound. Comparable to results on hydrous minerals, ΔT and ΔEV decrease systematically with increasing shock pressure. This indicates that shock loading leads to both the removal of structural volatiles and weakening of bonds between the volatile species and remainder of the crystal lattice.Optical and scanning electron microscopy (SEM) reveal structural changes, which are related to the shock-loading. Comparable to previous findings on shocked antigorite is the occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope. These areas are interpreted as representing quenched partial melts, into which shock-released CO2 has been injected.The experimental results are used to place bonds on models of impact production of CO2 during accretion of the terrestrial planets.  相似文献   

5.
Carbon and oxygen isotopic determinations have been made of 29 species of Recent Indian Ocean planktonic foraminifera. Fourteen core-top samples were used and as many as 18 species were chosen from a single core-top sample. The δ13C of the foraminifera was compared with that of total dissolved CO2 (ΣCO2) and of calcite precipitated in isotopic equilibrium with ΣCO2. The foraminiferal calcite is always at least 1.2‰ less than the value estimated for equilibrium calcite. This carbon isotopic disequilibrium suggests the partial utilization of13C-depleted metabolic CO2. The calcite tests of several species, however, have δ13C values which are similar to the δ13C of ΣCO2 in seawater. This relationship suggests that important paleohydrographic information may be obtained from carbon isotope records based on analyses of several foraminiferal species from single deep-sea sediment samples.  相似文献   

6.
This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2 concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2 ]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth interval and this intensive cementation is responsible for decreased porosity and permeability. In the CaCl2 water at the greater depth, pore water is un-der-saturated with respect to calcite, resulting in dissolution of calcite cements, as consistent with microscopic dissolution features of the samples from this depth interval. Calcite dissolution results in formation of high secondary porosity and permeability, and is responsible for the superior quality of the reservoir rocks at this depth interval. These results illustrate the importance of pore water chemis-try in controlling carbonate precipitation/dissolution, which in turn controls porosity and permeability of oil and gas reservoir rocks in major sedimentary basins.  相似文献   

7.
At 30 kbar, calcite melts congruently at 1615°C, and grossularite melts incongruently to liquid + gehlenite (tentative identification) at 1535°C. The assemblage calcite + grossularite melts at 1450°C to produce liquid + vapor, with piercing point at about 49 wt.% CaCO3. Vapor phase is present in all hypersolidus phase fields except for those with less than about 7% CaCO3 or 8% Ca3Al2Si3O12. These results, together with known liquidus data for CaO—SiO2—CO2 and inferred results for CaO—Al2O3—CO2 and Al2O3—SiO2—CO2, permit construction of the position of the CO2- saturated liquidus surface in the quaternary system, and estimation of the positions of liquidus field boundaries separating some of the primary crystallization fields on this surface. The field of calcite is separated from those for grossularite and quartz by a field boundary with about 50% dissolved CaCO3. Crystallization paths of silicate liquids in the range Ca2SiO4—Ca3Al2Si3O12—SiO2, with some dissolved CO2, will terminate at a quaternary eutectic on this field boundary, with the precipitation of calcite together with grossularite and quartz, at a temperature below 1450°C. Addition of Al2O3 to CaO—SiO2—CO2 in amounts sufficient to stabilize garnet thus causes little change in the general liquidus pattern as far as carbonates and silicates are concerned. With addition of MgO, we anticipate that silicate liquids with dissolved CO2 will also follow liquidus paths to fields for the precipitation of carbonates; we conclude that similar paths link kimberlite and some carnbonatite magmas.  相似文献   

8.
Hydroelectric reservoirs generate energy without significant combustion of fossil fuels. However, these systems can, potentially, emit greenhouse gases (GHG’s) at a rate which may be significant at the global scale, and, possible, co-equal, per kilowatt-hour, to that from conventional coal or oil-fired systems. Although much of the new construction of hydroelectric reservoirs is in the tropics, most of the data on GHG emissions comes from temperate regions. Further, much of the existing data on reservoir gas emissions comes from single sites, usually near the terminal dams. Large tropical reservoirs often involve the impoundments of river systems with complex morphology which in turn can cause spatial heterogeneity in gas flux. We evaluated spatial and seasonal variability in CO2 concentrations and gas flux for five large (50–1,400 km2) reservoirs in the Cerrado region of Brazil. Most of data set (87% of all measurements) showed CO2 supersaturation and net efflux to the atmosphere. There was as much or more variation in pCO2 over space and among seasons. The large studied reservoirs showed different zones in terms of CO2 emission because those fluxes are dependent on flooded biomass, watershed input of organic matter and dam operation regime. Here we demonstrate that the reservoirs in the Brazilian Cerrado have low rates of CO2 emissions compared to existing global comparisons. Our results suggest that ignoring the spatial variability can lead to more than 25% error in total system gas flux.  相似文献   

9.
Iwojima volcano, located on the southernmost part of the Izu-Ogasawara arc, is characterized by the extrusion of trachyte or trachy andesite lavas and pyroclastic rocks of Holocene and surface thermal manifestations. Small phreatic explosions have been recorded frequently during the last 100 years with the most recent in 1999 and 2001. In order to elucidate the behavior of volcanic volatiles and to assess the potential activity of this volcano, diffuse CO2 efflux, CO2 content and δ13C–CO2 in soil gas, and soil temperature at 30 cm depth were measured at 272 sites in March 2000, 112 sites in December 2000 and 40 sites in December 2001. We found that high CO2 efflux values, of more than 100 g m−2 day−1, occurred at several locations on Motoyama volcano corresponding with high soil temperatures (more than 60 °C at 30 cm depth) region and with areas where CO2 with magmatic δ13C was observed. Here, the magmatic δ13C determined for fumarolic CO2 data ranged from −2‰ to +3‰, which is clearly higher than magmatic gas values (−8‰ to −2‰) typically found in island arc settings around the world. However, this can be explained in terms of carbon-isotope fractionation between calcite and CO2 under subsurface temperature and pressure conditions at Iwojima. A total efflux of CO2 for Iwojima volcano is estimated to be 760 t day−1, with a magmatic contribution of about 450 t day−1. This value is rather high compared with other volcanoes in island arc settings. Since Iwojima has no visible plume, almost all volcanic CO2 is released as diffuse efflux through the volcanic edifice.  相似文献   

10.
Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between ? 7.2‰ and ? 5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈ 0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).  相似文献   

11.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   

12.
A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model,13C of the dissolved carbonate species changes systematically along the flow path. The difference in δ values between the upper and lower part of the stream is about 1‰. The13C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4‰. The18O composition of dissolved carbonate and H2O is constant along the stream. Calculated calcite-water temperatures differ by about +5°C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO3 deposition from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes.Plant populations in the water have virtually no influence on CO2 degassing, calcite saturation and isotopic fractionation. Measurements of PCO2, SC and13C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO2 degassing and calcite precipitation, caused by continuously changing hydrodynamic conditions and carbonate nucleation rates.  相似文献   

13.
Wide variations were measured in the diffuse CO2 flux through the soils in three selected areas of Mt Etna between August 1989 and March 1993. Degassing of CO2 from the area of Zafferana Etnea-S. Venerina, on the eastern slope of the volcano, has been determined to be more strongly influenced by meteorological parameters than the other areas. The seasonal component found in the data from this area has been excluded using a filtering algorithm based on the best fitting equation calculated from the correlation between CO2 flux values and those of air temperature. The filtered data appear to have variations temporally coincident with those from the other areas, thus suggesting a common and probably deep source of gas. The highest fluxes measured in the two most peripheral areas may correlate well with other geophysical and volcanological anomalous signals that preceded the strong eruption of 1991–1993 and that were interpreted as deep pressure increases. Anomalous decreases in CO2 fluxes accompanied the onset and the evolution of that eruption and have been interpreted as a sign of upward migration of the gas source. The variations of CO2 flux at the 1989 SE fracture have also given interesting information on the timing of the magmatic intrusion that has then fed the 1991–1993 eruption.  相似文献   

14.
The restored compositions for approximately 70 new analyses reported recently for Erta'Alelava lake (LeGuern et al., 1979) are in good agreement with restored compositions (Gerlach, 1980a) based on previously published data. The results confirm earlier indications that gas collections taken at different times from the lava lake are related principally by variations in CO2 content. Restored compositions for gas samples collected in the final stages of a November 1978 Ardoukoba eruption along the Asal Rift spreading axis resemble the Erta'Ale gases except for a much lower CO2 content. The Ardoukoba gases fall close to a CO2-decreasing control line for gases with initial compositions similar to the 1971–1973 Erta'Ale gases. These results suggest that gases released from basaltic lava along zones of crustal spreading follow compositional trends dominated by changes in CO2 content.  相似文献   

15.
A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (14 m) oxic epilimnion overlying a 200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification.The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid–SO4–Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a ‘memory’ of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid–SO4–Cl Crater lakes.The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by 4°C or providing heat to hypolimnetic waters or by seismic activity.Although Quilotoa lake contains a huge amount of dissolved CO2 (3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa are, therefore, recommended.  相似文献   

16.
Field observations coupled with experimental results show that CO2 can be produced by mechanical energy applied to carbonate rocks becoming an unexpected additional gas source besides that degassed from the mantle or produced by thermometamorphism. The evidence that a large amount of carbon dioxide associated with radiogenic-type helium (R/Ra as low as 0.01–0.08) is released through continental areas, denotes the absence of a contribution from the mantle or from mantle-derived fluids. Data collected during the seismic crisis which struck the Central Apennines in 1997–98 have shown an enhanced CO2 flux not associated with the presence of mantle or thermometamorphic-derived fluids. On the other hand, new experimental results highlight the possibility of producing CO2 by mechanical energy that acts on the calcite crystalline lattice. While the CO2 released over the geothermal areas (e.g., Larderello Geothermal Field) is obviously derived by mantle-derived activities, this is not the case of the huge amount of CO2 released over the seismically active areas where the presence mantle-derived products is ruled out. We propose that mechanical energy, e.g., released during seismic events, microseismicity or creeping processes is a possible additional energy source able to produce CO2 and thus could explain the presence of CO2 degassing over tectonic areas where the influence of the mantle is low.  相似文献   

17.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   

18.
CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O–CO2–Na–Cl–CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach high CO2 concentrations quite rapidly. We conclude that carbonate dissolution needs not to be feared.  相似文献   

19.
The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m?2 day?1, with an average of 27.1 g m?2 day?1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.  相似文献   

20.
The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, with the proven and controlled gas reserve of more than 200 billion cubic meters. These gas pools, with higher H2S contents averaging 9%, some 17%, are mainly distributed on structural belts of Dukouhe, Tieshanpo, Luojiazhai, Puguang, etc., while the oolitic-shoal dolomite of the Triassic Feixianguan Fm. (T1f) is the reservoir. Although many scholars regard the plentiful accumulation of H2S within the deep carbonate reservoir as the result of Thermochemical Sulfate Reduction (TSR), however, the process of TSR as well as its residual geological and geochemical evidence is still not quite clear. Based on the carbon isotopic analysis of carbonate strata and secondary calcite, etc., together with the analysis of sulfur isotopes within H2S, sulphur, gypsum, iron pyrites, etc., as well as other aspects including the natural gas composition, carbon isotopes of hydrocarbons reservoir petrology, etc., it has been proved that the above natural gas is a product of TSR. The H2S, sulphur and calcite result from the participation of TSR reactions by hydrocarbon gas. During the process for hydrocarbons being consumed due to TSR, the carbons within the hydrocarbon gas participate in the reactions and finally are transferred into the secondary calcite, and become the carbon source of secondary calcite, consequently causing the carbon isotopes of the secondary calcite to be lower (−18.2‰). As for both the intermediate product of TSR, i.e. sulfur, and its final products, i.e. H2S and iron pyrites, their sulfur elements are all sourced from the sulfate within the Feixianguan Fm. During the fractional processes of sulfur isotopes, the bond energy leads to the 32S being released firstly, and the earlier it is released, the lower δ 34S values for the generated sulphide (H2S) or sulfur will be. However, for the anhydrite that participates in reactions, the higher the reaction degree, the more 32S is released, while the less 32S remains and the more δ 34S is increased. The testing results have proved the process of the dynamic fractionation of sulfur isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号