首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unified probabilistic seismic hazard assessment (PSHA) for the Pyrenean region has been performed by an international team composed of experts from Spain and France during the Interreg IIIA ISARD project. It is motivated by incoherencies between the seismic hazard zonations of the design codes of France and Spain and by the need for input data to be used to define earthquake scenarios. A great effort was invested in the homogenisation of the input data. All existing seismic data are collected in a database and lead to a unified catalogue using a local magnitude scale. PSHA has been performed using logic trees combined with Monte Carlo simulations to account for both epistemic and aleatory uncertainties. As an alternative to hazard calculation based on seismic sources zone models, a zoneless method is also used to produce a hazard map less dependant on zone boundaries. Two seismogenic source models were defined to take into account the different interpretations existing among specialists. A new regional ground-motion prediction equation based on regional data has been proposed. It was used in combination with published ground-motion prediction equations derived using European and Mediterranean data. The application of this methodology leads to the definition of seismic hazard maps for 475- and 1,975-year return periods for spectral accelerations at periods of 0 (corresponding to peak ground acceleration), 0.1, 0.3, 0.6, 1 and 2 s. Median and percentiles 15% and 85% acceleration contour lines are represented. Finally, the seismic catalogue is used to produce a map of the maximum acceleration expected for comparison with the probabilistic hazard maps. The hazard maps are produced using a grid of 0.1°. The results obtained may be useful for civil protection and risk prevention purposes in France, Spain and Andorra.  相似文献   

2.
IntroductionDuringtheMarchof1997,anactive-sourceseismicexperimentwasundertakenbyajointSino-GermanseismicprojecttoinvestigatethesubsurfacestructurebeneaththeDabieUHPMbeltwithintheframeworkofinternationalContinentalScientificDrillingProgramme(ICDP).ThetargetareaislocatedbetweenYuexiandQianshaninAnhuiProvince,andgeologicallyonthejunctureoftheDabieorogenicbeltandtheTanlufault(Figurel).Thisexperimentisparticularlydesignedsinthefieldcombinedwiththeinterestsofseismictomographyandwide-anglere…  相似文献   

3.

目前研究一般认为华南块体是由扬子块体和华夏块体在新元古代拼合形成,并同时形成位于扬子块体东南边缘的江南造山带.但是由于华南地区构造历史复杂,对于扬子块体与华夏块体的分界及构造属性仍存在较大争议.为了研究华南块体的地下速度结构及构造属性,我们利用块体交界处的九嶷山及其附近的流动和固定台网的地震波数据,采用地震背景噪声互相关方法反演研究区域2~40 s瑞利波群速度和相速度分布,并进一步得出了该区域地壳的精细三维S波速度结构.反演成像结果显示,扬子块体与华夏块体的地壳及上地幔的结构特征差异显著.10~20 km的S波速度分布图显示呈线性的、连续分布低速异常,可能为扬子块体与华夏块体的具体分界位置.结合华南地区地球化学研究结果和构造历史,该低速异常可能代表了来自上地壳的变质沉积岩,即沉积岩受到上地幔物质上涌或底侵作用的加热变质形成.成像结果对了解华南地区的构造演化历史提供了地震学约束.

  相似文献   

4.
The results of a controlled source seismic reflection–refraction experiment carried out in 1992 reveal the following characteristics of the northern Izu–Bonin (Ogasawara) oceanic island arc–trench system. (1) The crust rapidly thickens from the Shikoku back-arc basin to the arc, is thickest beneath the active rifts, and then gradually thins to the forearc. The thickness of the crust beneath the arc rift zone and the back-arc basin are ∼ 20 km and 8 km, respectively. (2) The Moho vanishes beneath the forearc. Velocities rapidly decrease eastwards beneath the inner trench wall. (3) The velocity of the lower crust of the arc and the back-arc basin is 7.1–7.3 km/s. This velocity is higher than the typical oceanic lower crust whose velocity is ∼ 6.7 km/s. (4) The velocity of the middle crust of the arc is ∼ 6 km/s. This layer does not exist beneath the back-arc basin. (5) A slight difference in the velocity gradient of the middle crust exists between the arc rift zone and the forearc. Based on these findings and previous studies, it is inferred that: (i) the middle crust is probably granitic rock and formed in more than two episodes; (ii) the lower crust formed by igneous underplating which may also have affected part of the back-arc basin; and (iii) the root of the serpentinite diapir on the inner trench wall is a low-velocity mantle wedge that was probably caused by large amounts of water released from the subducting Pacific plate at depths shallower than 30 km.  相似文献   

5.
As one of the world's most active intracontinental mountain belts, Tien Shan has posed questions for researchers regarding the formation of different tectonic units and active shallow seismicity. Here, we used a huge data set comprising of 7094 earthquakes from local, regional and teleseismic seismic stations. We used waveform modeling and multi-scale double-difference earthquake relocation technique to better constrain the source parameters of the earthquakes. The new set of events provided us with better initial earthquake locations for further tomographic investigation. We found that reverse-faulting earthquakes dominate the whole study area while the fault plane solutions for earthquakes beneath the northwestern Tarim Basin and the Main Pamir Thrust are diverse. There is a low-velocity anomaly beneath Bashkaingdy at depth of 80 km, and high-velocity anomalies beneath central Tien Shan at shallower depths. These observations are the keys to understand the mechanism of Tien Shan's formation because of Tarim Basin northward and Kazakh Shield's southward subduction in the south and north respectively. Velocities beneath western Tien Shan are relatively high. We thus infer that the Western Tien Shan is relatively less deformed than the eastern Tien Shan primarily due to a relatively brittle mantle.  相似文献   

6.
Based on previous observations of the phenomenon of precursory seismic quiescence before crustal main shocks and recent results that indicate an increase in the occurrence of main shocks in the next years, we focus this study on the detection of the seismic quiescence situation in Greece in the beginning of 1999. We use the declustered seismicity catalogue of the Institute of Geodynamics, National Observatory of Athens (NOA) from 1968–1998, to investigate the significance of seismic quiescence for the region 19°–29°E and 34°–42°N. We searched for seismicity rate changes at every node of the grid by a moving time window and we present the results for the beginning of 1999. The results map four (4) areas having a quiescence which duration ranges from 3.8 to6 years in the beginning of 1999. Three of these areas have been devestated by catastrophic earthquakes 17–21 years ago and significant quiescence also preceded those main shocks. Based on these results, an estimate of the future seismic hazard of these areas is made.  相似文献   

7.
Crustal structure beneath the Songpan—Garze orogenic belt   总被引:2,自引:0,他引:2  
The Benzilan-Tangke deepseismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in the record sections,the 2-D P-wave crustal structure was ascertained in this paper.The velocity structure has quite strong lateral variation along the profile.The crust is divided into 5layers,where the first,second and third layer belong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocity basement in the area to the north of Ma‘erkang.The crustal structure in the section can be divided into 4parts:in the south of Garze-litang fault,between Garze-Litang fault and Xianshuihe fault,between Xianshuihe fault and Longriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division.The crustal thickness decreases from southwest to northeast along the profile,that is ,from62km in the region of the Jinshajiang River to 52km in the region of the Yellow River.The Moho discontinuity does not obviously change across the Xianshuihe fault basesd on the PmP phase analysis.The crustal average velocity along the profile is lower,about 6.30 km/s.The Benzilan-Tangke profile reveals that the crust in the study area is orogenic.The Xianshuihe fault belt is located in the central part of the profile,and the velocity is positive anomaly on the upper crust,and negative anomaly on the lower crust and upper mantle.It is considered as a deep tectonhic setting in favor of strong earthquake‘s accumulation and occurrence.  相似文献   

8.
Crustal structure of Dabieshan orogenic belt   总被引:2,自引:0,他引:2  
The crustal structures ofP velocity and density on the deep seismic sounding profile across the Ilabieshan orogenic belt are presented. There is a 5-km-thick crustal “root” between the Yuexi and Xiaotian where the elevation is highest on the profile. An apparent Moho offset of 4. 5 km beneath the Xiaotian-Mozitan fault marks the paleo-suture of the Triassic collision. A high-velocity anomaly zone at the depth below 3 km beneath the ultra-high pressure (UHP) zone may be correlated to the higher content of UHP metamorphic rocks. Project supported by the National Natural Science Foundation of China and the Joint Earthquake Science Foundation.  相似文献   

9.
10.
Geometry,kinematics and evolution of the Tongbai orogenic belt   总被引:3,自引:0,他引:3  
1 Introduction spectively[2,3]. Several tectonic units such as the Bei- The Qinling-Dabie orogenic belt has attracted huaiyang, north Dabie, south Dabie and Susong belts worldwide attention by its very complex and abundant have been recognized in eastern Dabie[4]. Nine tec- geological characters, and has been a “hot point” of tonic units have been recognized in western Dabie and international geological research[1]. A vast amount of a more detailed division has been suggested especially …  相似文献   

11.
Numerical simulation of Dabie orogenic belt's tectonic evolution   总被引:1,自引:0,他引:1  
IntroductionDabieorogenicbeltisthecollisionorogenbetweentheSino-KoreancratonandYangtzecraton.Sincethediscoveriesofcoesiteatthelater1980s,Dabieorogenicbelthasbecomethemostfamousultra-highpressure(UHP)metamorphicbeltinafewyears.Coesite-bearingeclogitef...  相似文献   

12.
Variations in characteristics of the seismic process are considered under various thermodynamic conditions. In addition to the usual parameters, differences between hypocenter depths obtained from seismic moment solutions and ordinary hypocentral determinations are considered. Two different tendencies are shown to prevail in source parameter variations for events that occur above and below 80–100 km. The first tendency apparently corresponds to variations in the parameters of ordinary crustal earthquakes with increasing pressure. The second tendency is supposedly associated with the prevalence of specific deep mechanisms of seismogenesis. Distinctions in the dynamics of earthquakes developing downward and toward the surface are examined and accounted for by a low density fluid phase present in earthquake sources. The localization of deep earthquakes at certain depths and specific features of deep seismogenesis are discussed. Such features are related to the role of transformations in the material of subducting plates in the occurrence of deep earthquakes. The problem of genesis of deep earthquakes is discussed.  相似文献   

13.
本文考虑地震动的随机性,运用概率密度演化方法对基础隔震结构的随机响应进行研究.上部结构与隔震层分别采用刚度退化的Bouc-Wen模型与Bouc-Wen模型,建立隔震结构的概率密度演化方程,直接应用四阶龙格-库塔方法迭代求解隔震结构的非线性的响应,得出隔震结构在8度罕遇地震下每层的位移概率.结果显示隔震结构较非隔震结构上部结构的位移大大地减小了,上部结构具有足够的安全性.结构整个概率密度演化过程显示了隔震结构的响应信息,概率密度演化方法能够有效评估隔震结构的抗震性能.  相似文献   

14.
基于2009—2017年新疆区域数字地震台网记录的地震波形数据,利用波形互相关技术及主事件定位方法识别并重新定位了新疆天山中段及其周缘的重复地震。以波形互相关系数0.9作为阈值来确定研究区的重复地震事件,统计结果显示3万零181个事件中的1万1 618个为重复地震事件,这些重复地震事件组成了2395组重复地震对和重复地震丛,占总事件数的38.5%。根据重复地震重定位前后地震对之间距离的统计结果推测,该区域的系统定位误差约为5—10 km。进一步结合该区域最新的震源分类结果对不同震源类型重复地震的时空分布特征予以分析,结果显示:重复矿山爆破事件在空间上呈丛集性分布,且其中的93.6%发生于白天,同时呈现季节性发生模式,即爆破多发生于夏季,而冬季较少;而重复构造地震在空间上大多沿断层分布,24小时内呈随机分布的特征,且研究时段内每个月的活动水平相对平稳;重复诱发地震成丛分布于靠近油气田和水库的区域,但其中部分诱发地震的位置与构造地震重叠,发震时间特征与构造地震相似,为随机分布。   相似文献   

15.
天山造山带的深部结构   总被引:5,自引:0,他引:5  
天山造山带是中亚最令人瞩目的一条由陆陆汇聚而形成的陆内造山带,从古生代以来经历了长期的构造演化,尤其是新生代以来的再次活化,导致了本区复杂的构造特征,因此在全球范围内具有独特性和活动性,是全球公认的研究大陆动力学的天然实验室.从1980年以来,针对天山及周缘的深部结构特征开展了大量的深地震探测研究工作,揭示了天山造山带...  相似文献   

16.
Ultrahigh‐temperature (UHT) granulites in the South Altay orogenic belt of Northwestern China provide important clues for the lower crustal components and tectonic evolution of the Central Asian Orogenic Belt during the Paleozoic. In this paper, we studied whole‐rock geochemistry and mineral characteristics to understand the protolith and metamorphic evolution of the Altay UHT granulite. The Altay granulite shows negative discriminant function values (DF) of ?9.27 to ?3.95, indicating a sedimentary origin, probably an argillaceous rock. The peak metamorphic temperature–pressure conditions of 920–1010 °C and > 9 kbar were estimated from the geothermobarometry, together with the stability of spinel (low ZnO) + quartz and orthopyroxene (Al2O3 up to 9.2 wt.%) + sillimanite + quartz in the Altay UHT rock, indicate a UHT metamorphic condition has been achieved. Two stages of retrograde conditions are recognized in these rocks; the first is an isothermal decompression to approx. 750 °C at 5.2–5.8 kbar at the early stage, and the second is the cooling down to 520–550 °C at 4.8–5.2 kbar. Combined with previous study, the formation of the Altay UHT pelitic granulite with a clockwise retrograde P–T path is inferred to be related with collisional and accretional orogenic process between the Siberian and Kazakhstan–Junggar plates.  相似文献   

17.
Thermal models of subduction zones often base their slab–wedge geometry from seismicity at mantle depths and, consequently, cannot be used to evaluate the relationship between seismicity and structure. Here, high-resolution seismic observations from the recent Broadband Experiment Across the Alaska Range (BEAAR) constrain, in a rare instance, the subducting slab geometry and mantle wedge temperature independent of seismicity. Receiver functions reveal that the subducting crust descends less steeply than the Wadati-Benioff Zone. Attenuation tomography of the mantle wedge reveals a high Q and presumably cold region where the slab is less than 80 km deep. To understand these two observations, we generate thermal models that use the improved wedge geometry from receiver functions and that incorporate temperature- and strain-rate-dependent olivine rheology. These calculations show that seismicity within the subducting crust falls in a narrow belt of pressure–temperature conditions, illuminating an effective Clapeyron slope of 0.1 K/MPa at temperatures of 450–750 °C. These conditions typify the breakdown of high-pressure hydrous minerals such as lawsonite and suggest that a single set of dehydration reactions may trigger intermediate-depth seismicity. The models also require that the upper, cold nose of the mantle wedge be isolated from the main flow in the mantle wedge in order to sustain the cold temperatures inferred from the Q tomography. Possibly, sufficient mechanical decoupling occurs at the top of the downgoing slab along a localized shear zone to 80 km depth, considerably deeper than inferred from thrust zone seismicity.  相似文献   

18.
Continental extension is forming the Gulf of Corinth across the strike of earlier Alpine evolution. Here, we present the first deep reflection sections with pre-stack depth-migration processing across the deep basin of the Corinth active rift, which image structures unpredicted by current models. Resolving the infill as a pile of layers that are broken by faults allows one to follow their subsidence and deformation history. Variation among the profiles suggests that southern normal faults control the rift in a time progression from the east towards its western tip. On the central, Derveni-Itea transect, a 3-km widening of the basin accrued since the initiation of this control that is marked by an unconformity between the two main sedimentary units. This is estimated to have occurred 0.5-0.6 Myr ago, assuming the glacio-eustatic sea-level changes have controlled the stratigraphy of sediments deposited as a succession of layers on the subsiding hangingwall, as they did on the southern footwall in forming the famous flight of marine terraces of Corinth. A roll-over anticline and crestal collapse graben are diagnostic of the control by a normal fault of dip varying with depth. The deeper low-angle part of this bi-planar fault is indeed imaged as a reflector in the basement. The occurrence of the collapse with a breakaway at the steep southern basin-bounding fault of the hangingwall slab can be estimated 0.12-0.2 Myr ago, with a marked increase in extension rate that brought it to its present fastest value over 10 mm/yr. The low-angle part of the active fault might also have controlled earlier evolution upslope and in the basin. When compared with inferences from earthquake studies, this low-angle active fault may not appear to be seismogenic but may participate to the seismic cycle, possibly in a conditionally stable regime. Active faults seen as sea-bottom scarps merely accommodate deformation of its subsiding hangingwall. The footwall of the low-angle faults, which current seismicity shows to be in extension, appears then as being pulled out from beneath the rift, in a motion towards the rolling-back slab that causes the Hellenic subduction retreat.  相似文献   

19.
During a severe earthquake, steel moment resisting frames are expected to experience significant inelastic deformation in their members and joints. This behaviour is dependent upon several design parameters such as member sizes, frame's overstrength, member deformation capacities and the detailing of components. In this study, the influence of such aspects on the inelastic response of frames is investigated. Inelastic static and dynamic analyses were performed on four frames of different designs for a typical six-storey building. The frames were designed and detailed in accordance with current North American code requirements. The computed response of each frame was compared with the behaviour expected by the codes. Recommendations for a design procedure are suggested for improving the structural performance of low-rise steel frames subjected to strong earthquake excitation.  相似文献   

20.
A computer program is developed to test the influence of the structural overstrength to calibrate seismic codes. The program automatically performs an iterative design-evaluation process to calibrate the seismic code. A numerical example is performed in order to test the different approaches. The virtual simulation shows that the force reduction factor cannot be directly deduced from building performance in past earthquakes. This custom of deducing the force reduction factor from the building performance under past earthquakes artificially increases the ratios elastic spectrum to design spectrum due to the design structural overstrength. The similitude of the simulation with the historical calibration of the design spectrum in the seismic codes in the United States of America (USA) is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号