首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The correlation between theδ~(13)C andδ~(18)O in primary carbonates is affected by several factors such as hydrological balance,total CO_2 concentrations,climatic condition and lake productivity. The influence of these factors on theδ~(13)C-δ~(18)O correlation may be different on different time scales.In this paper,two different-type lakes in southwestern China,Lake Erhai and Lake Chenghai,are selected to investigate the influence of climatic pattern on theδ~(13)C-δ~(18)O correlation and to evaluate the reliability of theδ~(13)C-δ~(18)O covariance as an indicator of hydrological closure.The results show that there exists good correlation between theδ~(13)C andδ~(18)O in Lake Erhai (overflowing open lake) and in Lake Chenghai (closed lake).This suggests that theδ~(13)C-δ~(18)O covariance may be not an effective indicator of hydrological closure for lakes,especially on short time scales.On the one hand,a hydrologically open lake may display covariantδ~(13)C andδ~(18)O as a result of climatic influence.The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of theδ~(13)C-δ~(18)O covariance in Lake Erhai and Lake Chenghai.On the other hand,a hydrologically closed lake unnecessarily displays covariant trends betweenδ~(13)C andδ~(18)O because of the buffering effect of high CO_2 concentration on theδ~(13)C shift in byper-alkaline lakes.We should be prudent when we use the covariance betweenδ~(13)C andδ~(18)O to judge the hydrological closure of lake.  相似文献   

2.
The correlation between the Δ13c and 18O in primary carbonates is affected by several factors such as hydrological balance, total CO2 concentrations, climatic condition and lake productivity.The influence of these factors on the Δ13c-δ18 correlation may be different on different time scales. In this paper, two different-type lakes in southwestern China, Lake Erhal and Lake Chenghai, are selected to investigate the influence of climatic pattern on the Δ13c-Δ18o correlation and to evaluate the reliability of the Δ13c-Δ18o covariance as an indicator of hydrological closure. The results show that there exists good correlation between the Δ13c and Δ18o in Lake Erhai (overflowing open lake) and inLake Chenghal (closed lake). This suggests that the Δ13c-Δ18o covariance may be not an effective indicator of hydrological closure for lakes, especially on short time scales. On the one hand, a hydrologically open lake may display covariant Δ13c and δ18 as a result of climatic influence. The particular alternate warm-dry and cold-wet climatic pattern in southwestern China may be the principal cause of the Δ13c-δ18 covariance in Lake Erhai and Lake Chenghal. On the other hand, a hydrologically closed lake unnecessarily displays covariant trends between Δ13c and δ18 because of the buffering effect of high CO2 concentration on the Δ13c shift in hyper-alkaline lakes. We should be the buffering feeect of high CO2 concentration on the 13Cshift in hyper-alkaline lakes.We should be prudent when we use the covariance between 13C and 18O to judge the hydrological closure of lake.  相似文献   

3.
Lake Xingcuo is a small closed,hard-water lake ,situated on eastern Tibet Plateau.Stable isotope data(δ^18O and δ^13C) from the freshwater snail Gyraulus sibirica(Dunker)in a34 cm long,radioactive isotope-dated sediment core represent the last 200 years of Lake Xingcuo environmental history.Carbon and oxygen isotope ratios in the shells of the freshwater snail bear information on the isotopic composition of the water in which the shells were formed ,which in turn characterizes the climatic conditions prevailing during the snail‘s life span.Whole-shell and incremental growth data were collected from modern and fossil shells from Lake Xingcuo.The δ18^O values of modern shells from Lake Xingcuo are in equilibrium with high δ^13CTDIC.By calibrating δ^18O and δ^13C in the shell Gyraulus sibirica(Dunker)with in-strument-measured data for the period 1954-1992,we found that the δ^18O of the snail shells is an efficient indicator to reveal air temperature in the warmer half year instead of that around the whole year,and that there is a certain positive correlation between index δ^18O and the run-ning average temperature in the warmer half-yiar period.Climatic variability on eastern Tibet Plateau,for the last two centuries,has been successfully inferred from the δ^18O record in freshwater snails in the sediments of Lake Xingcuo.As such,the last 200 years of palaeocli-matic record for this region can be separated into three periods representing oscillations between warming and cooling,which are confirmed by the Guliya ice record on the Tibet Plateau.  相似文献   

4.
Surface lake sediments,28 from Hoh Xil,24 from northeastern China,99 from Lake Bosten,31 from Ulungur and 26 from Heihai were collected to determine δ13C and δ18O values.Considering the impact factors,conductivity,alkalinity,pH,TOC,C/N and carbonate-content in the sediments,Cl,P,S,and metal element ratios of Mg/Ca,Sr/Ca,Fe/Mn of bulk sediments as environmental variables enable evaluation of their influences on δ13C and δ18O using principal component analysis(PCA) method.The closure and residence time of lakes can influence the correlation between δ13C and δ18O.Lake water will change from fresh to brackish with increasing reduction and eutrophication effects.Mg/Ca in the bulk sediment indicates the characteristic of residence time,Sr/Ca and Fe/Mn infer the salinity of lakes.Carbonate formation processes and types can influence the δ13C–δ18O correlation.δ18O will be heavier from Mg-calcite and aragonite formed in a high-salinity water body than calcite formed in freshwater conditions.When carbonate content is less than 30%,there is no relationship with either δ13C or δ18O,and also none between δ13C and δ18O.More than 30%,carbonate content,however,co-varies highly to δ13C and δ18O,and there is also a high correlation between δ13C and δ18O.Vegetation conditions and primary productivity of lakes can influence the characteristics of δ13C and δ18O,and their co-variance.Total organic matter content(TOC) in the sediments is higher with more terrestrial and submerged plants infilling.In northeastern and northwestern China,when organic matter in the lake sediments comes from endogenous floating organisms and algae,the δ13C value is high.δ13C is in the range of 4‰ to 0‰ when organic matter comes mainly from floating organisms(C/N<6);in the range of 4‰ to 8‰ when organic matter comes from diatoms(C/N=6 to 8);and 8‰ to 4‰ when organic matter comes from aquatic and terrestrial plants(C/N>8).  相似文献   

5.
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.  相似文献   

6.
Based on the data developed from various s natural waters in the Qinghai Lake area and ostracode shells present in drill core QH-16A of recent lake-floor sediments ,this paper discusses the distribution of stable isotopes in the modern water body of Qinghai Lake,and the initial isotopic composition of the lake water has been deduced ,Studies of δ^18O,δ^13C,Mg/Ca and Sr/Ca in ostracode shells provide the basis for the establishment of the model of climatic fluctuation in the Qinghai Lake area since the postaglacial age,as well as for the elucidation of the environmental evolution of the water body of Qinghai Lake since the postglacial age.  相似文献   

7.
REE-fluorocarbonates as major REE minerals in the Bayan Obo deposit,the largest REE deposit in the world,were analyzed for their stable isotopic compositions,The δ^13 C and δ^18 O values of huanghoite,cebaite and bastnaesite from late-stage veins vary in the ranges of 7.8--4.0‰ and 6.7-9.4‰,respectively,These data are relatively similar to those of bastnaesites from banded ores:δ^13C-5.6--5.2‰ andδ^18O3.6-5.5‰.The REE fluorocarbonates from both late-staege veins and banded ores are characterized by lower δ^13 C and δ^18O values,especially the δ^18O values of bastnaesites from banded ores.Compared with them,the disseminated bastnaesits the dolomite-type ores possess rather highδ^13 C and δ^18O values,i.e.,-2.1-0.4‰ and 8.6-12.9‰ respectively.The high values are typical of the sedimentary host dolomite rocks as well as of the dolomite-type-ores.The carbon and oxygen isotopic characteristics of REE fluorocarbonate minerals provide new evidence for the hypothesis on the origin of Bayan Obo deposit-epigenetic hydrothermal metasomatism.  相似文献   

8.
Lacustrine sediments can provide potential information about environmental changes in the past. On the basis of high-resolution multi-proxy analysis including carbon and nitrogen contents of organic matter, C/N ratios, inorganic carbon contents, and carbon and oxygen isotopic composition of carbonate, together with precise 137Cs dating, the environmental evolution of Lake Chenghai, Yunnan Province, during the past 100 years has been investigated. It is shown that the carbonate in Lake Chenghai is authigenic, and the organic matter is mainly derived from aquatic plants and algae, instead of terrestrial-source materials. The environmental evolution of Lake Chenghai can be diverged into three periods with the contrasting characteristics during the past 100 years. Before 1940, the stable carbon and oxygen isotope values, the poor correlation between them and the lower carbon and nitrogen contents of organic matter suggested that Lake Chenghai was open, and the lake water was oligotrophic during that period. During 1940-1993, the negative δ13C values and the gradual increase of carbon and nitrogen contents of organic matter and C/N ratios indicated that the eutrophication was aggravated. The closeness of Lake Chenghai and human activities may be responsible for this eutrophication. After 1993, notable increases in carbon and oxygen isotopic values of carbonate, carbon and nitrogen contents of organic matter, C/N ratios and inorganic carbon contents demonstrated that the increase of lacustrine productivity and the serious eutrophication were resulted from strong human activities. Therefore, the multi-proxy in Lake Chenghai sediments has reliably recorded the natural environmental evolution and the impacts from human activities.  相似文献   

9.
In this study, the δ^13C and δ^18O values were systematically measured on NBS-18, NBS-19 and IAEA-CO-1 with different sample sizes, with the objective to examine the stability and reproducibility of previously developed linearity correction strategy especially for small-sized samples (e.g. 〈50 μg). Firstly, the δ^13C and δ^18O values of NBS-19 standards (6-10 samples per run) with sample sizes scattered below -100 μg were determined in three different runs. The logarithmic regressions were performed on the plots of δ-values vs. peak area (sample size) for each run and the correction was applied using peak area of the first peak. Results show that two of the three data sets have almost the same regressive equations for both δ^13C and δ^18O values. The maximum difference in δ^13C values calculated by three equations when sample size varies between -10 and -100 μg is better than 0.15‰, compared with the maximum 0.82‰ for δ^18O values. Since alteration of phosphoric acids could not influence carbon isotope, the 〈0.15‰ difference in calculated δ^13C values should reflect the stability of mass spectrometer conditions. In contrast, the large difference in regressive equations for δ^18O values may be attributed to changed oxygen isotope in phosphoric acids due to exchange with atmosphere through time. It means that standards with sample sizes properly distributed should be arranged in every run for subsequent linearity correction of δ^18O values of small-sized samples (e.g. marine ostracode).  相似文献   

10.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

11.
西藏东部大气降水氧同位素组成特征   总被引:24,自引:0,他引:24  
The Xizang Plateau, with a common altitude of more than 4000 m sbove sea level,has long been celebrated as “The Roof of the World”. In order to study oxygen isotopic composition of meteoric water in the Xizang Plateau Region and its relationship with the attitude, we made an investigation tour to the Xizang Plateau, starting from Guizhow, during 1979 from July to October, and 79 meteoric Water samples were collected, including brook, well, lake, snow, firn, spring and running waters, at different altitudes. Oxygen isotope analyses indicate that the isotopie composition of meteoric water in the areas more than 4000g and in the western parts of SichuanGaizhow shows remarkable altitude effect. There is a negative correlation between δ^28O and altitude, which is reflected by --δ^18O = 0.0026H 7.75. The average δ^18O value for metcoric water in the areas: more than 4000m above sea level turns out to be --18.15‰ is evident that δ^18O value for lake water on the plateau is related to its water supply. δ^18O value for lake water, in which the evaporation is greater than supply,is approximately three or four times higher than that of supplied water, averaging -5.74‰. Oxygen isotopic compasition of geothermal water can be compared with that of local meteoric water, but shows certain δ^18O-shift, suggesting that the main water-supply source seems to be meteoric water in the same area.  相似文献   

12.
Relationship between the δ^13C of tree ring cellulose from Pinus Koraiensis and climate parameters was investigated.A significantly negative correlation between δ^13C and mean low-cloud amount from May to July was discovered,which contributes to reconstructing the mean low-cloud amount form May to July at Antu in recent 200years.Periodicals of quasi-8-year,quasi-4-year and quasi-2-year were detected both in δ^13 C series and in the reconstructed low cloud amount series with 95% confidence level.Quasi-8-year period may reflect the integrated influence of solar activity,monsoon activity and local regional factors.Quasi-4-year and quasi-2-year periods indicate the influences of ENSO and Qussi Biennial Oscillation(QBO)of East Asian monsoon,respectively.  相似文献   

13.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

14.
The relationship between δ18O in precipitation and climatic factors is analyzed based on the observation of δ18O in precipitation and meteorological data in the four years from 1992 to 1995 at Tuotuohe Meteorological Station, Tibetan Plateau. Almost all the precipitation on the Tibetan Plateau is concentrated on the warm period of the year, while in the dry cold period, there is only a few precipitation events. Because the factors affecting δ18O in precipitation is rather complicated and the air temperature does not change too much in the precipitation season, the distribution of δ18O in precipitation with air temperature is therefore scattered. In this paper, the relationship between the averages of each meteorological factor and the corresponding δ18O in precipitation is analyzed. The analysis results indicate that there is an obvious positive correlation between the monthly δ18O and temperature in the 4 years: whenever the air temperature increases 1℃, δ18O in precipitation will increase 0. 5‰. No correlation can be observed between relative humidity and B18O in precipitation. There still can not find any correlation between the annual air temperature and annual δ18O in precipitation in the 4 years probably due to the very short time series of the observation and the little annual air temperature variations.  相似文献   

15.
A 63-cm sediment core documents that the concentrations of nutrients in sediment, such as organic carbon, nitrogen and phosphorous, continually increased during the last century in Longgan Lake, middle reaches of the Yangtze River, China. C/N ratio and δ^13Corg revealed that organic matter in the sediment derived mainly from aquatic and terrestrial sources is a minor contributor. Excess phosphorous is related to human activities marked by utilization of phosphoric fertilizers since 1952 A.D. The increase of δ^13Corg towards the sediment surface, together with increasing of OC and N accumulation, indicated the elevation of lake primary productivity due to excess phosphorous loading caused by utilization of phosphoric fertilizer. The decrease of δ^15N during the primary productivity elevation process, especially after 1952, can be attributed to the discharged of nitrogen with lower δ^15N into the lake.  相似文献   

16.
The continuous wavelet transform (CWT) analysis reveals the instantaneous variability of the foraminiferal δ18O and δ13C of Site 1143 for the past 5 Ma at the eccentricity, obliquity and precession bands. The cross CWT analysis further demonstrates nonstationary phases of the benthic -δ18O relative to ETP at the three primary Milankovitch bands in the last 5 Ma. The instantaneous phases between benthic -δ18O and δ13C at the precession band display a prominent 128 ka period, probably the cyclicity of the nonstationary climate close to the eccentricity. To explain these nonstationary phases, it is desirable to introduce a nonlinear response model to the global climate system, in which the output has a prominent cycle around 100 ka to match the 128 ka cycle of the instantaneous phase of the δ13C and -δ18O on the precession band.  相似文献   

17.
This paper discusses the distribution pattern and geological significance of the carbon and oxygen isotopes (δ13C and δ18O) in the depositional sequences of Gaoyuzhuangian, Yangzhuangian and Wumishanian ages of the established Middle and Upper Proterozoic sequence stratigraphic framework in the Ming Tombs area lying in western Yanshan Mountain of Beijing. Besides, sketchy determination of δ13C and δ18O was also performed for other formations and members. The analytical results show the following: under the condition of clear-water carbonate sediments, δ13C and δ18O, featuring smaller variation of δ13C but larger variation of δ18O, can well delineate the relative change of sea level, which reflects the difference of primary sedimentary settings; in the presence of terrigenous substances, δ13C values vary greatly while δ18O slightly; the carbon and oxygen isotopes show marked changes at sequence boundaries. Besides, particular patterns can be found in regard to the distribution of carbon and oxy  相似文献   

18.
Multi-parameter studies (stable isotopes in carbonate and organic matter, pigment,organic carbon and nitrogen contents) from a 660-yr continuous sediment core from Lake Cheng-hai, a closed, eutropic lake in southern China, provide information on lake historical eutrophi-cation. During the last 660 years, great changes have taken place in productivity and eutrophi-cation of Lake Chenghai in response to human activities. In 1690, the productivity of the lakebegan to increase as Lake Chenghai became closed from agriculture in the lake‘‘ s watershed. In 1942, Lake Chenghai evolved to eutrophic state, marked by an increase in organic carbon, ni-trogen, CaC03, pigment contents and obvious negative values of stable isotopes, which is more or less simultaneous with the large-scale population immigration during the period. In 1984, in-tensive human activities induced modern lacustrine productivity and eutrophic level. Human-in-duced trophic changes during the past few decades have affected the Lake Chenghai ecosystem tosuch an extent that it has never experienced before in the last 660 years.  相似文献   

19.
Research on abrupt paleoclimatic and paleoenvironmental change provides a scientific basis for evaluating future climate. Because of spatial variability in monsoonal rainfall, our knowledge about climate change during the mid-to lateHolocene in southern China is still limited. We present a multi-proxy record of paleoclimatic change in a crater lake, Lake Shuangchi. Based on the age-depth model from 210 Pb, 137 Cs and AMS14 C data, high-resolution mid-to late-Holocene climatic and environmental records were reconstructed using multiple indices(TOC, TN, C/N, δ13 C and grain size). Shuangchi underwent a marked change from a peat bog to a lake around 1.4 kaBP. The C3 plants likely dominated during 7.0–5.9 ka and 2.5–1.4 kaBP, while C4 plants dominated between 5.9–3.2 and 3.0–2.5 kaBP. Algae were dominant sources of organic matter in the lake sediments after 1.4 kaBP. Several intervals with high concentrations of coarser grain sizes might be due to flood events. These results reveal that several abrupt paleoclimatic events occurred around 6.6 ka, 6.1 ka, 5.9 ka, 3.0 ka, 2.5 ka and 1.4 kaBP. The paleoclimatic change recorded in the lake may be related to the migration of the Intertropical Convergence Zone(ITCZ) and El Ni?o-Southern Oscillation(ENSO) activity.  相似文献   

20.
Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the authors explain how geological hazards in salt lake areas are caused by natural agents and how humans can seek benefits, avoid hazards and reduce losses on the premise that they have monitored and mastered the trend of salt lake changes in advance and even can store flood and recharge water in lakes and extract saline resources. The climate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号