首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Junggar Immature Continental Crust Province and Its Mineralization   总被引:22,自引:4,他引:18  
According to the study on the peripheral orogenic belts of the Junggar basin and combined with the interpretation of geophysical data, this paper points out that there is an Early Paleozoic basement of immature continental crust in the Junggar area, which is mainly composed of Neoproterozoic-Ordovician oceanic crust and weakly metamorphosed covering sedimentary rocks. The Late Paleozoic tectonism and mineralization were developed on the basement of the Early Paleozoic immature continental crust. The Junggar metallogenic province is dominated by Cr, Cu, Ni and Au mineralization. Those large and medium-scale deposits are mainly distributed along the deep faults and particularly near the ophiolitic melange zones, and formed in the Late Paleozoic with the peak of mineralization occurring in the Carboniferous-Permian post-collisional stage. The intrusions related to Cu, Ni and Au mineralization generally have low Is, and positive εNd(t) values. The δ34S values of the ore deposits are mostly near zero, and t  相似文献   

2.
Porphyry Cu (–Mo–Au) deposits occur not only in continental margin–arc settings (subduction-related porphyry Cu deposits, such as those along the eastern Pacific Rim (EPRIM)), but also in continent–continent collisional orogenic belts (collision-related porphyry Cu deposits, such as those in southern Tibet). These Cu-mineralized porphyries, which develop in contrasting tectonic settings, are characterized by some different trace element (e.g., Th, and Y) concentrations and their ratios (e.g., Sr/Y, and La/Yb), suggesting that their source magmas probably developed by different processes. Subduction-related porphyry Cu mineralization on the EPRIM is associated with intermediate to felsic calc-alkaline magmas derived from primitive basaltic magmas that pooled beneath the lower crust and underwent melting, assimilation, storage, and homogenization (MASH), whereas K-enriched collision-related porphyry Cu mineralization was associated with underplating of subduction-modified basaltic materials beneath the lower crust (with subsequent transformation into amphibolites and eclogite amphibolites), and resulted from partial melting of the newly formed thickened lower crust. These different processes led to the collision-related porphyry Cu deposits associated with adakitic magmas enriched by the addition of melts, and the subduction-related porphyry Cu deposits associated with magmas comprising all compositions between normal arc rocks and adakitic rocks, all of which were associated with fluid-dominated enrichment process.In subduction-related Cu porphyry magmas, the oxidation state (fO2), the concentrations of chalcophile metals, and other volatiles (e.g., S and Cl), and the abundance of water were directly controlled by the composition of the primary arc basaltic magma. In contrast, the high Cu concentrations and fO2 values of collision-related Cu porphyry magmas were indirectly derived from subduction modified magmas, and the large amount of water and other volatiles in these magmas were controlled in part by partial melting of amphibolite derived from arc basalts that were underplated beneath the lower crust, and in part by the contribution from the rising potassic and ultrapotassic magmas. Both subduction- and collision-related porphyries are enriched in potassium, and were associated with crustal thickening. Their high K2O contents were primarily as a result of the inheritance of enriched mantle components and/or mixing with contemporaneous ultrapotassic magmas.  相似文献   

3.
The Ransko gabbro–peridotite massif in Eastern Bohemia is a strongly differentiated intrusive complex, which hosts low-grade Ni–Cu ores mainly developed close to the contact of olivine-rich rocks with gabbros, in troctolites, and to a much lesser extent in both pyroxene and olivine gabbros and plagioclase-rich peridotites. Gabbro, troctolite, peridotite and Ni–Cu ores from the Jezírka Ni–Cu (PGE) deposit, considered to be a typical example of the liquid segregation style of mineralization, were analyzed for Re–Os concentrations and isotopic ratios. Seven barren and mineralized samples from the Jezírka deposit yielded a Re–Os regression of 341.5?±?7.9 Ma (MSWD?=?69). Strongly mineralized peridotite with mantle-like initial 187Os/188Os ratio of 0.125 suggests that Os as well as other PGE present in the Ni–Cu mineralization are predominantly of mantle origin. On the other hand, barren and low-mineralized samples have radiogenic initial 187Os/188Os ratios of 0.14–0.16 suggesting some import of Re and/or radiogenic 187Os most likely through contamination by continental crust during magma emplacement. The Re–Os age of the Ransko Massif is significantly younger than the previously suggested Lower Cambrian age, but it is similar to and/or younger than the age of metamorphism of the adjacent Kutná Hora crystalline complex and the Moldanubian unit. Therefore, it is likely that the emplacement of the Ransko massif and its Ni–Cu mineralization was closely connected with the late-stage evolution of the Kutná Hora crystalline complex.  相似文献   

4.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   

5.
The Shakhtama Mo–Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol–Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741–0.70782), relatively radiogenic Pb isotopic compositions, εNd(T) values close to CHUR (−2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.  相似文献   

6.
Adakitic rocks and related Cu–Au mineralization are widespread along eastern Jiangnan Orogen in South China. Previous studies have mainly concentrated on those in the Dexing area in northeastern Jiangxi Province, but information is lacking on the genesis and setting of those in northwestern Zhejiang Province. The Jiande copper deposit is located in the suture zone between the Yangtze and Cathaysia blocks of South China. This paper presents systematic LA–ICP–MS zircon U–Pb dating and element and Sr–Nd–Hf isotopic data of the Jiande granodiorite porphyry. Zircon dating showed that the Jiande granodiorite porphyry was produced during the Middle Jurassic (ca. 161 Ma). The Jiande granodiorite porphyry is characterized by adakitic geochemical affinities with high Sr/Y and LaN/YbN ratios but low Y and Yb contents. The absence of a negative Eu anomaly, extreme depletion in Y and Yb, relatively low MgO contents, and relatively high 207Pb/204Pb ratios, indicated that the Jiande granodiorite porphyry was likely derived from partial melting of the thickened lower continental crust. In addition, the Jiande granodiorite porphyry shows arc magma geochemical features (e.g., Nb, Ta and Ti depletion), with bulk Earth‐like εNd (t) values (?2.89 to ?1.92), εHf (t) values (?0.6 to +2.8), and initial 87Sr/86Sr (0.7078 to 0.7105). However, a non‐arc setting in the Middle Jurassic is indicated by the absence of arc rocks and the presence of rifting‐related igneous rock associations in the interior of South China. Combined with the regional Neoproterozoic Jiangnan Orogeny, it indicates that these arc magma geochemical features are possibly inherited from the Neoproterozoic juvenile continental crust formed by the ancient oceanic crust subduction along the Jiangnan Orogen. The geodynamic environment that is responsible for the development of the Middle Jurassic Jiande granodiorite porphyry is likely a localized intra‐continental extensional environment along the NE‐trending Jiangshan‐Shaoxing Deep Fault as a tectonic response to far‐field stress at the margins of the rigid South China Plate during the early stage of the paleo‐Pacific plate subduction. In terms of Cu mineralization, we suggest that the metal Cu was released from the subducted oceanic slab and reserved in the juvenile crust during Neoproterozoic subduction along the eastern Jiangnan Orogen region. Partial melting of the Cu rich Neoproterozoic juvenile crust during the Middle Jurassic time in the Jiande area caused the formation of adakitic rocks and the Cu deposit.  相似文献   

7.
ABSTRACT

The Tiantang Cu–Pb–Zn polymetallic deposit in western Guangdong, South China, is hosted in the contact zone between the monzogranite porphyry and limestone of the Devonian Tianziling Formation. Orebodies occur in the skarn and skarnized marble as bedded, lenses, and irregular shapes. In this study, we performed LA-ICP-MS zircon U–Pb dating, zircon trace elements, and Hf isotopic analyses on the Tiantang monzogranite porphyry closely related to Cu–Pb–Zn mineralization. Twenty-two zircons from the sample yield excellent concordia results with a weighted mean 206Pb/238U age of 104.5 ± 0.7 Ma, which shows that the emplacement of the monzogranite porphyry in the Tiantang deposit occurred in the Early Cretaceous. The zircon U–Pb age is largely consistent with the sulphide Rb–Sr isochron ages, indicating that both the intrusion and Cu–Pb–Zn mineralization were formed during the Early Cretaceous in South China. The εHf(t) values of three inherited zircons from the monzogranite porphyry are 13.1, 11.9, and 12.9, respectively, and the two-stage Hf model ages are 1096 Ma, 1087 Ma, and 1055 Ma, respectively. Except for the three inherited zircons, all εHf(t) values of zircons are negative and have a range of ?7.6 to ?3.4, with the two-stage model ages (TDM2) of 1380–1643 Ma, which indicates the rock-forming materials were mainly derived from the partial melting of Mesoproterozoic to Neoproterozoic crust rocks, and probably included some Neoproterozoic arc-related volcanic-sedimentary materials. In this study, the monzogranite porphyry from the Tiantang deposit has calculated Ce4+/Ce3+ ratios of zircon ranging from 91 to 359, indicative of a more oxidized signature and significant prospecting potential for ore-related magmatism. Based on ore deposit geology, isotope geochemistry, and geochronology of the Tiantang Cu–Pb–Zn deposit and regional geodynamic evolution, the formation of Early Cretaceous magmatism and associated polymetallic mineralization in South China is believed to be related to large-scale continental extension and subsequent upwelling of the asthenosphere.  相似文献   

8.
The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12–19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341–332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calc-alkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58–1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K2O in China crust are in ranges of 0.83–1.76 μg/g, 3.16–6.69 μg/g, and 1.0%–2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China’s continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.  相似文献   

10.
The Daolundaba Cu–polymetallic deposit is a newly discovered Cu–W–Sn deposit on the western slopes of the southern Great Xing’an Range, and its mineralization was related to an early Permian coarse-grained biotite granite. However, there is little information on the age of formation of the deposit. In this article, we present the results of our investigation into the age of the Daolundaba Cu–polymetallic deposit, which involved the selection of chalcopyrite and pyrrhotite samples for Rb–Sr isochron dating. A Rb–Sr isochron defined by the chalcopyrite samples yielded a Rb–Sr isochron age of 290.0 ± 11 Ma (MSWD = 1.2) with an initial Sr isotopic composition (ISr) of 0.71446. The pyrrhotite samples yielded a Rb–Sr isochron age of 283.0 ± 2.6 Ma (MSWD = 1.16) with an initial Sr isotopic composition (ISr) of 0.71447. The Rb–Sr isochron age determined from the chalcopyrite and pyrrhotite is 282.7 ± 1.7 Ma (MSWD = 1.13). These results indicate that the Daolundaba Cu–polymetallic deposit formed during the early Permian (282.7–290.0 Ma). The Rb and Sr contents of the chalcopyrite and pyrrhotite range from ~0.1325 to ~3.6810 ppm and from ~0.1219 to ~9.5740 ppm, respectively, and the initial Sr isotope ratios (ISr) range from 0.71047 to 0.71869, with an average of 0.714723. These isotopic characteristics indicate the ore-forming minerals of the Daolundaba Cu–polymetallic deposit originated mainly from the crust, but with small amounts of mantle material involved. The copper was derived from the associated magma whereas the W and Sn was derived from the surrounding strata. The Permian mineralization of the Xing’an–Mongolia region occurred in an active continental margin setting during subduction of the Palaeo-Asian oceanic plate beneath the Siberian Plate.  相似文献   

11.
The Wunugetushan porphyry Cu–Mo deposit is located in northeastern China. The deposit lies within the Mongolia–Erguna metallogenic belt, which is associated with the evolution of the Mongol–Okhotsk Ocean. The multiple episodes of magmatism in the ore district, occurred from 206 to 173 Ma, can be divided into pre-mineralization stage (biotite granite), mineralization stage (monzogranitic porphyry and rhyolitic porphyry), and post-mineralization stage (andesitic porphyry). The biotite granite has (87Sr/86Sr)i values of 0.704105–0.704706, εNd(t) values of ?0.67 to ?0.07, and εHf(t) values of ?0.4 to 2.8, yielding Hf two-stage model ages (TDM2) 1250–1067 Ma, and Nd model ages of 1.04–0.96 Ga, indicating that the pre-mineralization magmas were generated by the remelting of Neoproterozoic juvenile crustal material. The monzogranitic porphyry has (87Sr/86Sr)i values of 0.704707–0.706134, εNd(t) values of 0.29–1.33, and εHf(t) values of 1.0–2.9, yielding TDM2 model ages of 1173–1047 Ma. The rhyolitic porphyry has (87Sr/86Sr)i ratio of 0.702129, εNd(t) value of ?0.21, and εHf(t) values of ?0.5 to 7.1, TDM2 model ages from 1269 to 782 Ma. These results show that the magmas of mineralization stage were generated by the partial melting of juvenile crust mixed with mantle-derived components. The andesitic porphyry has (87Sr/86Sr)i ratio of 0.705284, εNd(t) value of 0.82, and εHf(t) values from 4.1 to 7.4, indicating that the post-mineralization magma source contained more mantle-derived material. The Mesozoic Cu–Mo deposits which genetically related to Mongol–Okhotsk Ocean were temporally distributed in Middle to Late Triassic (240–230 Ma), Early Jurassic (200–180 Ma), and Later Jurassic (160–150 Ma) period. The Middle Triassic to Early Jurassic Cu–Mo mineralization was dominated by Mongol–Okhotsk oceanic plate southeast-directed subducted beneath the Erguna massif. The Later Jurassic Cu–Mo mineralization was controlled by the continent–continent collision between Siberia plate and Erguna massif.  相似文献   

12.
On the formation of granulites   总被引:23,自引:0,他引:23  
The tectonic settings for the formation and evolution of regional granulite terranes and the lowermost continental crust can be deduced from pressure–temperature–time (P–T–time) paths and constrained by petrological and geophysical considerations. P–T conditions deduced for regional granulites require transient, average geothermal gradients of greater than 35°C km?1, implying minimum heat flow in excess of 100 mWm?2. Such high heat flow is probably caused by magmatic heating. Tectonic settings wherein such conditions are found include convergent plate margins, continental rifts, hot spots and at the margins of large, deep-seated batholiths. However, particular P–T–time paths do not allow specific tectonic settings to be distinguished at this time. Under different conditions, both clockwise, CW (Pmax attained before Tmax), and anticlockwise, ACW (Pmax attained slightly after Tmax), paths are possible in the same tectonic setting. Both CW and ACW end-member paths can yield nearly isobaric cooling, IBC, paths. Such cooling paths are clearly not an artefact of thermobarometry, but can be constrained by solid–solid and devolatilization equilibria and geophysical modelling. In terms of understanding the evolution of the deep crust, a potentially significant group of regional granulite terranes are those that show evidence for ACW-IBC paths. Such paths are the likely result of: (i) episodic igneous activity resulting in intrusions within all levels of the crust, (ii) thickening of the crust by magmatic underplating, (iii) slow uplift as a result of the formation of a deep, garnet-rich crustal root and (iv) excavation resulting from a later tectonic event unrelated to that resulting in the formation of the granulites. The later event might be triggered by the delamination of the garnet-rich, lowermost crust.  相似文献   

13.
Based on the results of a study of regional element abundance in eastern China and the 1:200 000 geochemical surveys in northern Xinjiang, the element geochemical characteristics of the exposed crust in 23 tectonic units of the continent of China are summarized. Compared with the global average abundance of the upper continental crust, the exposed crust of the continent of China is compositionally more evolved than the upper crust of the island arc, but less evolved than the mature Precambrian Canadian shield. The exposed crust of the North China and Yangtze platforms has a lower SiO2 content, but markedly higher CaO and MgO contents due to the presence of widespread carbonate strata, which suggests that we should not neglect the contribution of carbonate rocks in the study of the exposed crust and the element abundance of the upper crust. In comparison with two recently published average compositional models of the global upper continental crust, the exposed crust of the continent of China is depleted in Au, Hg, Mo, Sn, and W, which suggests that their abundance in the present global models is overestimated. The exposed crust of the North China platform and the Qinling-Dabieshan fold belt to its south has lower μ(238U/204Pb) values (<8), but other regions of the continent of China exhibit much higher μ values, which implies that the low μ feature of the North China platform and its adjacent regions does not have global significance. Considering the apparent lateral variation in composition of the exposed crust for the tectonic units of the continent of China, there is no adequate reason to take the average upper crust compositional model of the North China platform and its adjacent regions as a reliable composition representative for Chinese and global upper continental crust composition. Translated from Geological Bulletin of China, 2005, 24(10–11): 906–915 [译自: 地质通报]  相似文献   

14.
By the end of the Archean, the period of active volcanism, plutonism, accretion, and cratonization had been completed by the construction of stable continental plates. Afterward, cratons were subject to intense extension owing to mainly mantle diapirism and ascent of asthenospheric flows, which gave rise to the formation of ensialic intracratonic basins, whereas other linear troughs were expressed in the formation of continental rifts. Zones of continental rifting are characterized by a wide spectrum of mineral resources (Cu, Ni, PGE, Co, Ti, V, etc.) related to igneous complexes. This paper is focused on metallogeny of nickel-sulfide and PGE mineralization in the Fennoscandian Shield. The results of metallogenic analysis of Paleoproterozoic riftogenesis, along with the account of previous achievements, have shown that the aforementioned mineralization is related to three consecutive plume-tectonic pulses of mantle activization, which are expressed in (i) upwelling of the subcontinental mantle enriched in LREE, (ii) intrusion of mafic and ultramafic melts derived from enriched and depleted Archean mantle sources, and (iii) formation of low-sulfide Pt–Pd and Pt-bearing Cu–Ni sulfide deposits.  相似文献   

15.
《China Geology》2020,3(3):369-384
Although some porphyry-skarn deposits occur in post-collisional extensional settings, the post-collisional deposits remain poorly understood. Here the authors describe the igneous geology, and mineralization history of Tuolangla, a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class. The deposit is associated with Lower Cretaceous Bima Formation. It was intruded by granodiorite porphyry intrusions at about 23.1 Ma. Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry. Molybdenite yielded a Re-Os weighted mean age of 23.5 ± 0.3 Ma and is considered to represent the age of skarn mineralization at the deposit. The δ34S values of sulfides, concentrated in a range between 0.6‰ to 3.4‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust. The granodiorite porphyry displays high SiO2 (68.78%–69.75%) and K2O (3.40%–3.56%) contents, and relatively lower Cr (2.4×10-6–4.09×10-6), Ni (2.79×10-6–3.58×10-6) contents, and positive εHf(t) values (7.7–12.9) indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust. The Tuolangla deposit is located in the central part of Zedang terrane. This terrane was once considered an ancient terrane. This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north. Thus, the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane. This finding may clarify why the Oligocene (about 23 Ma) deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene (17–14 Ma) mineralization.  相似文献   

16.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   

17.
ABSTRACT

This article presents new zircon U–Pb geochronology, Hf isotopic, and whole-rock major- and trace-element geochemical data that provide insights into the petrogenesis and tectonic history of the Riwanchaka granodiorite porphyries of Central Qiangtang, Tibet. Zircon U–Pb ages of 236–230 Ma indicate an early Late Triassic age of emplacement of the porphyries, and zircon Hf isotopic data yield εHf(t) values of – 7.0 to – 1.5 and ancient zircon Hf crustal model ages (TDMC) of 1524–1220 Ma. The granodiorite porphyries are characterized by low K2O contents, high Mg# values, and relatively high Cr and Ni contents. They are classified as I-type calc-alkaline granite and are considered to have formed through the anatexis of ancient mafic crustal rocks with contributions from mantle-derived components. The geochemistry and isotopic compositions of all samples are similar to those of magmatic rocks that originated in the South Qiangtang crust. However, field observations indicate that the pluton intrudes the North Qiangtang crust, and we propose that the granodiorite porphyries were derived by partial melting of subducted continental crust of the South Qiangtang terrane. These new data have been integrated with data from previous studies to construct a new model of slab rollback during northward subduction of the Southern Qiangtang continental crust at ca. 245–226 Ma, thereby improving our understanding of magmatic processes involved in continental subduction in collision settings.  相似文献   

18.
The origin of magmas that are linked to economic mineralization in porphyry deposits formed in continental collisional belts is controversial. In this paper, we studied the mafic microgranular enclaves (MMEs) and their host monzogranite porphyries (HMPs) from the Dabu porphyry Cu–Mo deposit in southern Tibet. Zircon SHRIMP U–Pb ages indicate coeval formation for the MMEs and HMPs in middle Miocene time (~15 Ma). The MMEs have high Mg# (50.7–60.8), low SiO2 (53.2–62.5 wt.%), and high Cr (95–175 ppm) contents, with positive εHf(t) values ranging from +3.4 to +9.4. These results, along with the presence of phlogopite, suggest that the MMEs were most likely generated by partial melting of a metasomatic lithospheric mantle source region. The HMPs have high Sr/Y (88.2–135.7), La/Yb (25.0–31.9) ratios, and moderate Mg# (46.2–49.3) values. They have the same εHf(t) values (+3.3 to +7.7) with arc-like Palaeogene rocks. The HMPs also show typical arc magma characteristics such as enrichment in LILEs (e.g. Rb, Ba, Sr, and K) and depletion in HFSEs (e.g. Nb, Ta, Ti, Zr, and P). These results suggest a possible origin involving high-pressure remelting of thickened lower crustal arc cumulates related to earlier Neo-Tethyan subduction. The lower crustal arc cumulates dominated by garnet-bearing amphibolite facies could be the potential copper sources of the Dabu porphyry Cu–Mo deposit. Underplating of the mantle-derived mafic magmas could have provided heat input for melting of the hydrous lower crust. Reaction between the mafic and felsic magmas might have further increased Cu concentrations and contributed to subsequent mineralization.  相似文献   

19.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

20.
Sharang is a low-fluorine, calc-alkaline porphyry Mo deposit hosted mainly in a granite porphyry of a multi-stage plutonic complex in the northern Gangdese metallogenic belt, largely with stockwork and ribbon-textured mineralization. The observed age estimates suggest that the formation of the magmatic host complex (52.9–51.6 Ma) and the ore deposit itself (52.3 Ma) occurred during the main stage of the India–Asia collision. The host rocks are characterized by lower zircon εHf(t) values than those of the pre-ore and post-ore rocks. This suggests that the Lhasa terrane basement might play an important role in the formation of Sharang ore-forming intrusions. In view of the framework of magmatic–metallogenic events we suggest that slab roll-back may have induced melting of juvenile crust and ancient continental complexes during the India–Asia collision. This proposal focuses exploration for additional molybdenum deposits on the collision zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号