首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature conditions in the Barents Sea are determined by the quality and quantity of the inflowing Atlantic water from the west and by processes taking part in the Barents Sea itself, in particular as a consequence of winter cooling and ice formation. The field of inflow to the Barents Sea during the period 1977-1987 has been studied. The surface winter temperatures within the Barents Sea vary in parallel with variations in the deeper layers of the inflowing water masses, whereas the surface temperatures in summer have a different variation pattern which is most likely dependent on the summer heating process.  相似文献   

2.
The Ctenophora Mertensia ovum and Beroe cucumis , collected using both conventional sampling gear and scuba divers, were studied in the Barents Sea east of Bjørnøya and North Norway in spring 1987 and summer 1988. Among the gelatinous zooplankton, Mertensia ovum was the most consistently abundant copepod predator.
Feeding experiments were conducted to evaluate the predation rate of M. ovum in various trophic regimes. This ctenophore can take prey varying in size from small copepods to amphipods and krill, but gut-content analyses from field-collected specimens as well as experimental results showed that the main food source for adults was large-sized copepods (e.g. Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa ). The robust tentacle arrray of M. ovum makes this species effective as a predator on large prey. The high potential predation rate of this ctenophore relative to its estimated metabolic cost of only 1.7% of the body energy content d−1 suggests that M. ovum may be able to maintain a positive energy balance even in conditions of low prey abundance. It is suggested that a single exploitation of a zooplankton patch may provide energy for survival for a very long time.
The potential impact of M. ovum on Barents Sea copepod populations is estimated on the basis of the minimal observed average daily ration in experiments and from field data on gut contents. Using abundances of copepods for the area, and the actual predator biomass collected, it was estimated that an average of 0.7% of the copepod fauna per day could fall prey to this predator.  相似文献   

3.
Phytoplankton dynamics and carbon input into Arctic and sub-Arctic ecosystems were investigated around Svalbard, in summer 1991. Phytoplankton biomass, species composition and dissolved nutrient concentrations were analysed from water samples collected along seven transects. Phytoplankton biomass was low especially to the north (Chlorophyll-a mean 0.3 pg 1- '), where flagellates dominated the communities and only ice-diatoms were present. To the west, the phytoplankton composition was representative of a summer Atlantic community, in a post-bloom state. Zooplankton grazing, mainly by copepods, appeared to be the main control on biomass to the west and north of Svalbard.
In the Barents Sea (east of Svalbard), an ice edge bloom was observed (Chlorophyll-a max. 6.8 pgl-') and the ice edge receded at a rate of approximately 1 1 km day-'. The phytoplankton community was represented by marginal ice species, especially Phaeocystis poucherii and Chaeroceros socialis. South of the ice edge, Deep Chlorophyll Maxima (DCM) were observed, as surface waters became progressively nutrient-depleted. In these surface waters, the phytoplankton were predominantly auto- and heterotrophic flagellates.
Carbon production measurements revealed high net production (new and regenerated) to the north of the Barents Sea Polar Front (BSPF); it was especially high at the receding ice edge (reaching 1.44gC m-'day-'). To the south, a low level of production was maintained, mainly through regenerative processes.  相似文献   

4.
In a remote oceanic area like the Barents Sea, it is often difficult to follow the seasonal development of copepod populations in detail. Information on the gonad maturation stage of older juveniles and adults of a species will reveal the immediate state of reproduction and the expected development of juveniles into reproductively active adults. Winter "resting stages" in juveniles can also be recognised.
Zooplankton were caught during Pro Mare cruises in early March, May, July/August, mid-September and mid-October. Abundance and composition of developmental stages of small copepods were determined for several stations from each cruise. Samples consisting of Stages CIV to CV1 of Pseudocalanus acuspes (Giesbrecht 1881), P. minutus (Kröyer), Microcalanuspusillus (Sars), and M. pygmaeus Sars were stained with carmine and analysed with respect to gonad maturation stage, length, width, and area of the prosome and the area of the gonad and the oil sac. Image analyses were performed from photographs or drawings of copepods using a digitising pad.
With additional information on abundance and stage composition, and by comparing the present data set with information on Pseudocalanus spp. from Balsfjorden, northern Norway, seasonal cycles for the species could be inferred.  相似文献   

5.
南北极海冰变化及其影响因素的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
海冰是海洋-大气交互系统的重要组成部分,与全球气候系统间存在灵敏的响应和反馈机制。本文选用欧洲空间局发布的1992—2008年海冰密集度数据分析了南北极海冰在时间和空间上的变化规律与趋势,并结合由美国环境预报中心(National Centers for Environmental Prediction,NCEP)和美国大气研究中心(National Center for Atmospheric Research, NCAR)联合制作的NCEP/NCAR气温数据和ENSO指数探讨了南北极海冰变化的影响因素。结果表明,北极海冰面积呈明显的减少趋势,其中夏季海冰最小月的减少更快。北冰洋中央海盆区、巴伦支海、喀拉海、巴芬湾和拉布拉多海的减少最明显。南极海冰面积呈微弱增加趋势,罗斯海、太平洋扇区和大西洋扇区的海冰增加。北极海冰面积与气温有显著的滞后1个月的负相关关系(P0.01)。北极升温显著,北冰洋中央海盆区、喀拉海、巴伦支海、巴芬湾和楚科奇海升温趋势最大,海冰减少很明显。南极在南大西洋、南太平洋呈降温趋势,海冰增加。北极海冰减少与39个月之后ONI的下降、40个月之后SOI的上升密切相关;南极海冰增加与7个月之后ONI的下降、6个月之后SOI的上升存在很好的响应关系。南北极海冰变化与三次ENSO的强暖与强冷事件有很好的对应关系。  相似文献   

6.
SpeciescompositionandquantitativevariationofzooplanktonintheGreatWallBayandits adjacentwaters,AntarcticaHuangFengpeng(黄凤鹏)and...  相似文献   

7.
The maximum dense shelf water salinity formed during winter in the Svalbard Bank area of the north-western Barents Sea is reconstructed for the period 1952–2000 by analysing the transformation of summer remnants. The variability of 34.7 - 35.4, waters being at the freezing point, is mainly generated by interannual variations in the near surface salinity. On interannual time scales the latter is strongly linked to the sea ice import. In contrast, no correlation of the salinity of the Atlantic Water (AW) throughflow to the Arctic Ocean with the ice import is found. Salinities of both the dense shelf water site in the north-west Barents Sea and the north-eastward AW throughflow show a long term decrease, which can partly be explained by a less saline inflow of AW from the Norwegian Sea. The unusually low dense water salinities in the north-west Barents Sea during the 1990s appear to have a different origin, consistent with a response to oceanic heat advection and decreasing sea ice extent.  相似文献   

8.
Features of the physical oceanographic conditions of the Barents Sea   总被引:17,自引:2,他引:15  
  相似文献   

9.
初步鉴定南极长城湾及其附近水域浮游动物 3 5种。南极种挠足类 Calanus propinquus、Calanoidesacutus、Metrdia gerlachei和南极磷虾幼体为调查区的优势种。结果表明 ,调查水域浮游动物种类单纯 ,符合南极水域浮游动物分布的一般规律。调查水域浮游动物总生物量和个体数量具明显的季节变化。夏季主要有 Calanioidisacatus和南极磷虾幼体组成 ,冬季主要有 Metr-dia gerlacher、Calanus propinquus、Oithon similis、O.frigda及南极磷虾幼体组成。挠足类拟成体的数量在各月份中占相当大的比例。水温是制约浮游动物生物量的重要因素。  相似文献   

10.
From 1993 to 1996, three oceanographic moorings were deployed in the north-western Barents Sea, each with a current meter and an upward-looking sonar for measuring ice drafts. These yielded three years of currents and two years of ice draft measurements. An interannual variability of almost I m was measured in the average ice draft. Causes for this variability are explored, particularly its possible connection to changes in atmospheric circulation patterns. We found that the flow of Northern Barents Atlantic-derived Water and the transport of ice from the Central Arctic into the Barents Sea appears to be controlled by winds between Nordaustlandet and Franz Josef Land, which in turn may be influenced by larger-scale variations such as the Arctic Oscillation/North Atlantic Oscillation.  相似文献   

11.
Distribution and life history of krill from the Barents Sea   总被引:2,自引:0,他引:2  
Krill from the Barents Sea were studied on six cruises from 1985 to 1989. Thysanoessa inermis and T. longicaudata were the dominant species, while T. raschii and Meganyctiphanes norvegica were rarer in the studied areas. The two dominant species T. inermis and T. longicaudata are mainly found in the Atlantic. Water and they do not to a large extent penetrate into Arctic water masses in the northern Barents Sea. M. norvegica is a more strict boreal species that does not occur as extensively in the Barents Sea as do the Thysanoessa species. The mean population abundance ranged from 1 to 61 individuals m−2 for T. inermis and from 2 to 52 ind. M−2 for T. longicaudata . The mean dry weight biomass of these two species ranged from 14 to 616 and from 19 to 105 mg−2. Length frequency distributions indicate a life span of just over two years for T. inermis and T. longicaudata . Growth took place from about April to autumn with no apparent growth during winter. Maturation and spawning seem to occur after two years for T. inermis and one year for T. longicaudata . Main spawning occurred from May to June coinciding with the spring phytoplankton bloom. Captive spawners of T. inermis (total length 17-22 mm) shed 30-110 eggs per female in a single batch.  相似文献   

12.
The horizontal distribution of the epipelagic zooplankton communities in the western Arctic Ocean was studied during August–October 2008. Zooplankton abundance and biomass were higher in the Chukchi Sea, and ranged from 3,000 to 274,000 ind. m?2 and 5–678 g WM m?2, respectively. Copepods were the most dominant taxa and comprised 37?94% of zooplankton abundance. For calanoid copepods, 30 species belonging to 20 genera were identified. Based on the copepod abundance, their communities were classified into three groups using a cluster analysis. The horizontal distribution of each group was well synchronized with depth zones, defined here as Shelf, Slope and Basin. Neritic Pacific copepods were the dominant species in the Shelf zone. Arctic copepods were substantially greater in the Slope zone than the other regions. Mesopelagic copepods were greater in the Basin zone than the other regions. Stage compositions of large-sized Arctic copepods (Calanus glacialis and Metridia longa) were characterized by the dominance of late copepodid stages in the Basin. Both the abundance and stage compositions of large copepods corresponded well with Chl. a concentrations in each region, with high Chl. a in the Shelf and Slope supporting reproduction of copepods resulting in high abundance dominated by early copepodid stages.  相似文献   

13.
The Arctic Mediterranean is the ocean area north of the Greenland-Scotland Ridge. Exchanges between this region and the North Atlantic both provide the main source for production of North Atlantic Deep Water and supply heat and salt to the northern oceans. The exchange occurs through several gaps in the ridge; in terms of volume flux the Iceland-Scotland Gap is the most important one as it carries more than half the total, with approximately three quarters of the total inflow and one third of the total outflow. The Nordic WOCE observational system was initiated to monitor the exchanges through this gap and it has provided data that allow estimates of typical fluxes and their seasonal variation. The flux measurements show that most of the Atlantic inflow to the Arctic Mediterranean returns as overflow and hence the processes forming intermediate and deep waters in the Arctic Mediterranean are the main forcing mechanism for the Atlantic inflow. The inflow between Iceland and Scotland seems to be a maximum in late winter while the Faroe Bank Channel overflow is strongest in late summer. Using the results from the Nordic WOCE system it has been possible to interpret historical observations from Ocean Weather Ship Station M and conclude that the flux of the Faroe Bank Channel overflow decreased in magnitude from 1950 to 2000.  相似文献   

14.
Dynamics of plankton growth in the Barents Sea: model studies   总被引:2,自引:0,他引:2  
1-D and 3-D models of plankton production in the Barents Sea are described and a few simulations presented. The 1-D model has two compartments for phytoplankton (diatoms and P. pouchelii) , three for limiting nutrients (nitrate, ammonia and silicic acid), and one compartment called "sinking phytoplankton". This model is coupled to a submodel of the important herbivores in the area and calculates the vertical distribution in a water column. Simulations with the 3-D model indicate a total annual primary production of 90-120g C m−2 yr−1 in Atlantic Water and 20-50g C m−2 yr−1 in Arctic Water, depending on the persistence of the ice cover during the summer.
The 3-D model takes current velocities, vertical mixing, ice cover, and temperature from a 3-D hydrodynamical model. Input data are atmospheric wind, solar radiation, and sensible as well as latent heat flux for the year 1983. The model produces a dynamic picture of the spatial distribution of phytoplankton throughout the spring and summer. Integrated primary production from March to July indicates that the most productive area is Spitsbcrgenbanken and the western entrance to the Barents Sea. i.e. on the northern slope of Tromsøflaket.  相似文献   

15.
North Atlantic Water (NAW) is an important source of heat and salt to the Nordic seas and the Arctic Ocean. To measure the transport and variability of one branch of NAW entering the Arctic, a transect across the entrance to the Barents Sea was occupied 13 times between July 1997 and November 1999, and hydrography and currents were measured. There is large variability between the cruises, but the mean currents and the hydrography show that the main inflow takes place in Bjørnøyrenna, with a transport of 1.6 Sv of NAW into the Barents Sea. Combining the flow field with measurements of temperature and salinity, this results in mean heat and salt transports by NAW into the Barents Sea of 3.9×1013 W and 5.7×107 kg s−1, respectively. The NAW core increased in temperature and salinity by 0.7 °C yr−1 and 0.04 yr−1, respectively, over the observation period. Variations in the transports of heat and salt are, however, dominated by the flow field, which did not exhibit a significant change.  相似文献   

16.
1999年夏季中国首次北极考察区水团特征   总被引:11,自引:3,他引:11       下载免费PDF全文
依据 1 999年 7月至 9月中国首次北极考察队在白令海、楚科奇海和南加拿大海盆的现场调查资料 ,本文分析了三个海区的水团特征 :( 1 )白令海水团主要由季节变化显著的白令海上层水团和中层水团以及深层水团组成 ;( 2 )楚科奇海水文特征受融结冰过程影响较大 ,1 999年7月和 8月差异较大 ,其水团主要为浅海变性水团 ,包括两个次级水团 ,楚科奇海夏季水和来自北太平洋以及北冰洋变性的外海入侵水 ;( 3)南加拿大海盆的水团主要由受融结冰过程影响的表层水团、源于太平洋水的次表层水、源自北大西洋的中层水团和深层水团组成  相似文献   

17.
Glacier activity at Russkaya Gavan', north-west Novaya Zemlya (Arctic Russia), is reconstructed by particle size analysis of three fjord sediment cores in combination with 14C and 210Pb dating. Down-core logging of particle size variation reveals at least two intervals with sediment coarsening during the past eight centuries. By comparing them with reconstructions of summer temperature and atmospheric circulation, these intervals are interpreted to represent two cycles of glacier advance and retreat sometime during ca. AD 1400–1700 and AD 1700–present. Sediment accumulation thus appears to be sensitive to century-scale fluctuations of the Barents Sea climate. The identification of two glacier cycles in the glaciomarine record from Russkaya Gavan' demonstrates that during the "Little Ice Age" major glacier fluctuations on Novaya Zemlya occurred in broad synchrony with those in other areas around the Barents Sea.  相似文献   

18.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations .The model,with no flux adjustment,reproduces well the Atlantic Water core temperature(AWCT) in the Arctic Ocean and shows that four largest decadal-scale warming episodes occurred in the 1930s,70s,80s,and 90s,in agreement with the hydrographic observational data.The difference is that there was no pre-warming prior to the 1930s episode,while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s,leading the 1990s into the largest and prolonged warming in the 20th century.Over the last century,the simulated heat transport via Fram Strait and the Barents Sea was estimated to be,on average,31.32 TW and 14.82 TW,respectively,while the Bering Strait also provides 15.94 TW heat into the western Arctic Ocean.Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT(C=0.75 ) at 0- lag.The modeled North Atlantic Oscillation(NAO) index has a significant correlation with the heat transport(C=0.37).The observed AWCT has a significant correlation with both the modeled AWCT(C=0.49) and the heat transport(C=0.41). However,the modeled NAO index does not significantly correlate with either the observed AWCT(C=0.03) or modeled AWCT(C=0.16) at a zero-lag,indicating that the Arctic climate system is far more complex than expected.  相似文献   

19.
北冰洋夏季海冰覆盖面积在2012年达到低值。为了了解海冰变化对浮游动物群落的影响, 利用夏季西北冰洋22个站位的网采样品, 通过种类组成和丰度研究了群落的类型、结构和地理分布, 探讨了其分布特征与环境因子的关系。根据记录到的54种(类)浮游动物, 21站位可以划分成在地理上基本隔离的三个浮游动物群落: 楚科奇海南部群落, 藤壶幼体数量占优, 站位丰度百分比在56.6%—79.8%之间, 桡足类次之(18.0%—42.2%), 同时还含有少量的白令海种类;楚科奇海中北部群落以广布性桡足类占绝对优势(62.3%—96.8%), 藤壶幼体次之(0—30.9%);深海群落浮游动物的丰度极低, 组成上以桡足类为主(71.6%—89.8%), 且多数是体型较大极地种。楚科奇海陆坡边缘的M06站丰度较高但是种类组成与深海站位相似, 没有归入任何群落。两个浅水群落优势种都是北极哲水蚤(Calanus glacialis)、伪哲水蚤类(Pseudocalanus sp.)、圆胃住囊虫(Oikopleur vanhoffeni)以及藤壶幼体(Barnacle larva), 但优势度各异。深海群落优势种较多, 北极哲水蚤(Calanus glacialis)、极北哲水蚤(Calanus hyperboreus)、细长长腹水蚤(Metridia longa)以及北极拟真刺水蚤(Paraeuchaeta glacialis)等体型较大的桡足类优势度较高, 体型较小的矮小微哲水蚤(Microcalanus pygmaeus)、长腹剑水蚤(Oithona similis)优势度相对较低。与群落类型按维度和深度的变化趋势一致, 统计分析显示表层温度和表层盐度是最重要的影响因子。与海冰覆盖面积较高的2003年相比, 群落类型和地理分布没有显著变化, 但是楚科奇海浮游动物丰度增加了1—2倍, 深海群落丰度降低而组成上大型种类比例升高。  相似文献   

20.
Sagitta elegans var. arctica , the dominant and locally abundant chaetognath in the Barents sea, was collected from the upper 50 m in Arctic water masses during an ice edge bloom in early summer 1983. In situ sampling was made along a transect at discrete depths with a 375 μm mesh net mounted on a plankton pump. Prey composition and feeding rate were estimated from gut content analyses on preserved specimens combined with data on digestion times from previous studies. No diel variations were found in feeding activity. The diet reflected the composition of available prey in the zooplankton and consisted mainly of nauplii, small copepods (early stages of Calanus, Pseudocalanus, Oithona ) and appendicularians. Prey usually occurred as a single item in the gut.
Mean prey body width related to chaetognath head width yielded a power curve, with a large amount of scatter, showing that chaetognaths in the Barents Sea can use a wide spectrum of prey sizes. Similarly, maximum prey body width was related to chaetognath head width as a power curve, reflecting the existence of an upper prey size limitation due to the chaetognath mouth size. The highest abundance of S. elegans (5 specimens m−3), and the most intense feeding activity, were found within or beneath the maximum zooplankton biomass. Further, distribution and feeding were affected by light intensity, salinity, and the population structure of 5. elegans var. arctica.
Estimated feeding rates ranged between 0.30 and 1.05 prey items per chaetognath day−1. This corresponds to an ingestion of 8-54 μg AFDW day−1, and a consumption of 0.08–0.22% of the zooplankton standing stock day−1. From these rates, the calculated yearly ingestion by S. elegans var. arctica was 3% of the annually secondary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号