首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Central and Eastern Macedonia of Northern Greece large NW–SE trending basins filled up mainly with terrestrial sediments developed during the Neogene over the Alpine basement rocks. Among them, the Strymon basin was established along the NNW–SSE trending Strouma/Strymon Lineament which formed over the tectonic boundary of the Serbomacedonian and Rhodope massifs, both representing the hinterland of the Hellenic orogen. The present study suggests that the Strymon basin was not formed as a syn-detachment basin over the Strymon Valley Detachment Fault, considered to have caused exhumation of the Rhodope massif metamorphic complex. Instead, transpressional s.l. tectonics dominated the region in the Late Oligocene-Early Miocene and it progressively changed into a wrench tectonics under which the Strymon basin has been initiated in the Middle Miocene. The basin continued to develop further under a short-lived NW–SE extension in the Middle-Late Miocene. The whole deformation is attributed to the late-stage collisional processes between the Apulia and Eurasia plates. The prevalent NE–SW extension has been constrained later on in the Late Miocene and Pliocene times activating both low-angle and high-angle NW–SE trending faults and causing the regional tilting towards the SW of the mountain fault blocks (i.e., mountain chains). From Quaternary onwards, the Strymon basin has been separated from the Strymonikos Gulf basin due to an N–S extension that mainly activates E–W striking normal faults.  相似文献   

2.
Analysis of seismic anisotropy in the crust and mantle wedge above subduction zones gives much information about the dynamic processes inside the Earth. For this reason, we measure shear wave polarization anisotropy in the crust and upper mantle beneath central and southwestern Japan from local shallow, intermediate, and deep earthquakes occurring in the subducting Pacific slab. We analyze S phases from 198 earthquakes recorded at 42 Japanese F-net broadband seismic stations. This data set yields a total of 980 splitting parameter pairs for central and southwestern Japan. Dominant fast polarization directions of shear waves obtained at most stations in the Kanto–Izu–Tokai areas are oriented WNW–ESE, which are sub-parallel to the subduction direction of the Pacific plate. However, minor fast polarization directions are oriented in NNE–SSW directions being parallel to the strike of the Japan Trench, especially in the north of Izu Peninsula and the northern Tokai district. Generally, fast directions obtained at stations located in Kii Peninsula and the Chubu district are oriented ENE–WSW, almost parallel to the Nankai Trough, although some fast directions have NW–SE trends. The fast directions obtained at stations in northern central Honshu are oriented N–S. Delay times vary considerably and range from 0.1 to 1.25 s depending on the source depth and the degree of anisotropy along the ray path. These lateral variations in splitting character suggest that the nature of anisotropy is quite different between the studied areas. Beneath Kanto–Tokai, the observed WNW–ESE fast directions are probably caused by the olivine A-fabric induced by the corner flow. However, the slab morphology in this region is relatively complicated as the Philippine Sea slab is overriding the Pacific slab. This complex tectonic setting may induce lateral heterogeneity in the flow and stress state of the mantle wedge, and may have produced NNE–SSW orientations of fast directions. The ENE–WSW fast directions in Kii Peninsula and the Chubu district are more coherent and may be partly induced by the subduction of the Philippine Sea plate. The N–S fast directions in northern central Honshu might be produced by the trench-parallel stretching of the wedge due to the curved slab at the arc–arc junction.  相似文献   

3.
The volcanic island of Ischia is located on the Tyrrhenian margin of Central Italy, characterized by Plio-Quaternary NW–SE- and NE–SW-trending extensional fractures. Ischia displays a resurgent dome uplifted by at least 800 m in the last 33 ka. Remote sensing and field data have been collected to study the structural setting of the island, the deformation pattern associated with resurgence and the superimposition of the regional and the resurgence-induced stress fields. NW–SE and NE–SW extensional fracture systems predominate throughout the island and around the resurgent block, suggesting a relationship with the regional extensional structures. These systems were formed before resurgence and were partly reactivated during resurgence. The reactivation of pre-existing regional systems during resurgence confined the extent of the uplifted area. N–S- and E–W-trending systems have been found exclusively at the borders of the dome and are interpreted as being induced by resurgence. The topmost resurgent block shows an octagonal shape in map view and is tilted at an angle of 15° around a NE–SW-trending horizontal axis; the block is partly bordered by high-angle, inward-dipping regional faults. More than 90% in volume of the volcanic products coeval with resurgence on Ischia have been erupted outside the resurgent block area, suggesting that the resurgence process locally replaced volcanic activity in the last 33 ka.  相似文献   

4.
意大利埃特纳火山的三维速度结构与地震活动性   总被引:2,自引:2,他引:0  
本文的研究工作,得到了埃特纳火山下面的一组新的三维速度模型。作者们用1980年以来地方性地震在永久和临时地震台网在4个或更多台记录到的1249次地震的P和S波,被选来作走时反演。选择了几种判别标志与参数化办法以显示其类似的基本特征。表明在火山的东南象限在浅层,有P波的高速分怖,它同布格重力高异常有密切关系。在该区存在低的Vp/Vs比值;沿着中央火山管道,分布有高速P波和高的Vp/Vs比值;建议该处存在有稠密的侵入的岩浆体,延伸到20千米左右的深度,该区附近有低速的P波速度。对震源的重新定位也显示出向外倾斜的易碎区,与中央火山管道延伸出一段P波高速异常区,位于中央火山口的附近。沿着中央火山口附近,有P波的低速区,它同次生的火山锥的分布有关,与部份熔融的深部岩浆库有联系。  相似文献   

5.
We present the results of a tomographic study performed in the framework of the 3F-Corinth project. The aim of this work is to better understand the rifting process by imaging the crustal structure of the western Gulf of Corinth. Forty-nine stations were deployed for a period of six months, allowing us to monitor the microseismicity. Delayed P and S first-arrival times have been simultaneously inverted for both hypocenter locations and 3-D velocity distributions. We use an improved linearized tomography method based on an accurate finite-difference travel-time computation to invert the data set. The obtained Vp and Vs models confirm the presence of a two-layer vertical structure characterized by a sharp velocity gradient lying at 5–7 km depth, which may be interpreted as a lithological contrast. The shallower part of the crust (down to 5 km depth) is controlled by the N-S extension and lacks seismicity. The deeper part (7–13 km depth) matches the seismogenic zone and is characterized by faster and more heterogeneous anomalies. In this zone, the background seismicity reveals a low-angle active surface dipping about 20° toward the north and striking WNW-ESE. The position of this active structure is consistent with both high Vp/Vs and low Vp.Vs anomalies identified at 8–12 km depth and suggesting a highly fracturated and fluid-saturated zone. Both the geometry of the active structure beneath the gulf and the presence of fluids at 8–12 km depth are in accordance with a low-angle detachment model for the western part of the Gulf of Corinth. S. Gautier and D. Latorre formerly at Géosciences Azur  相似文献   

6.
Least-squares collocation technique was used to process regional gravity data of the SE South American lithospheric plate in order to map intermediate (10–2000 km) wavelength geoid anomalies. The area between 35–10° S and 60–25° W includes the Paraná CFB Province, the Southern São Francisco Craton and its marginal fold/thrust belts, the Brazilian continental margin and oceanic basins. The main features in the geoid anomaly map are: (a) Paraná CFB Province is characterized by a 1000 km long and 500 km wide, NE-trending, 9 m-amplitude negative anomaly which correlates with the distribution of sediments and basalts within the Paraná basin. (b) A circular (600–800 km in diameter) positive, 8 m-amplitude geoid anomaly is located in the southern S. Francisco craton and extends into the northeastern border of the Paraná CFB Province. This anomaly partially correlates with Alto Paranaíba Igneous Province (APIP), where alkalic volcanism and tholeiitic dikes of ages younger than 80 Ma are found and where a low-velocity zone in the mantle has been mapped using seismic tomography. This positive geoid anomaly extends towards the continental margin at latitude 21° S and joins a linear sequence of short wavelength positive geoid anomalies associated with Vitoria–Trindade seamounts. (c) A NE-trending, 1000 km long and 800 km wide, 4 m-amplitude, positive geoid anomaly, which is located along the southeastern coast of Brazil, from latitude 24 to 35° S. The northern part of this anomaly correlates with the Ponta Grossa Arch and Florianopolis dyke swarm provinces. The age of this intrusive volcanism is 130–120 Ma. (d) A circular positive anomaly with 9 m of amplitude, located over the Rio Grande and Uruguay shields and offshore Pelotas basin. Few alkaline intrusives with ages between 65 and 80 Ma are found in the region and apatite fission track ages in basement rocks indicates cooling at around 30 Ma. A semi-quantitative analysis of the observed geoid anomalies using isostatic considerations suggests that the mechanism which generated Paraná CFB Province did not change, in a significant manner, the lithospheric thermal structure, since the same geoid pattern observed within this province continues northward over the Neoproterozoic fold/thrust belts systems separating the São Francisco and Amazon cratons. Therefore, this observation favours Anderson’s idea of rapid basaltic outpouring through a pull-apart mechanism along a major suture zone. A thermal component may still be present in the Southern São Francisco Craton and in the Rio Grande Shield and contiguous continental margins, sites of Tertiary thermal and magmatic reactivations.  相似文献   

7.
We determine the three-dimensional distribution of P- and S-wave velocities for Central São Miguel Island (Azores, Portugal) by tomographic inversion of local earthquake arrival times. We use P- and S-phases from 289 earthquakes recorded by a network of 20 seismometers. The model shows good resolution in the shallowest 5–6 km, as illustrated by different resolution tests. There are several velocity anomalies, interpreted as pyroclastic deposits, intrusive bodies, geothermal fields, and the effects of tectonics. A low Vp zone marks Furnas caldera, probably evidencing volcaniclastic sediments with development of intense geothermal activity. Another low Vp zone extends in correspondence of the highly fractured area between Fogo and the north coast. Conversely, strong positive anomalies are found south of Fogo and northwest of Furnas. They are interpreted in terms of high-density deposits and remnants of a plutonic intrusion. These interpretations are supported by the distribution of Vp/Vs, and are consistent with previous geological, geochemical, and geophysical data.  相似文献   

8.
Over the last 42 ka, volcanic activity at Lipari Island (Aeolian Arc, Italy) produced lava domes, flows and pyroclastic deposits with rhyolitic composition, showing in many cases evidence of magma mixing such as latitic enclaves and banding. In this same period, on nearby Vulcano Island, similar rhyolitic lava domes, pyroclastic products and lava flows, ranging in composition from shoshonite to rhyolite, were erupted. As a whole, the post-42 ka products of Lipari and Vulcano show geochemical variations with time, which are well correlated between the two islands and may correspond to a modification of the primary magmas. The rhyolitic products are similar to each other in their major elements composition, but differ in their trace element abundances (e.g. La ranging from 40 to 78 ppm for SiO2 close to 75 wt%). Their isotopic composition is variable, too. The 87Sr/86Sr (0.704723–0.705992) and 143Nd/144Nd (0.512575–0.512526) ranges partially overlap those of the more mafic products (latites), having 87Sr/86Sr from 0.7044 to 0.7047 and 143Nd/144Nd from 0.512672 to 0.512615. 206Pb/204Pb is 19.390–19.450 in latites and 19.350–19.380 in rhyolites. Crystal fractionation and crustal assimilation processes of andesitic to latitic melts, showing an increasing content in incompatible elements in time, may explain the genesis of the different rhyolitic magmas. The rocks of the local crustal basement assimilated may correspond to lithotypes present in the Calabrian Arc. Mixing and mingling processes between latitic and rhyolitic magmas that are not genetically related occur during most of the eruptions. The alignment of vents related to the volcanic activity of the last 40 ka corresponds to the NNW–SSE Tindari–Letojanni strike-slip fault and to the correlated N–S extensional fault system. The mafic magmas erupted along these different directions display evidence of an evolution at different PH2O conditions. This suggests that the Tindari–Letojanni fault played a relevant role in the ascent, storage and diversification of magmas during the recent volcanic activity.  相似文献   

9.
Group velocities of Rayleigh and Love waves along the paths across the Black Sea and partly Asia Minor and the Balkan Peninsula are used to estimate lateral variations of the crustal structure in the region. As a first step, lateral variations of group velocities for periods in the range 10–20 s are determined using a 2D tomography method. Since the paths are oriented predominantly in NE–SW or N–S direction, the resolution is estimated as a function of azimuth. The local dispersion curves are actually averaged over the extended areas stretched in the predominant direction of the paths. The size of the averaging area in the direction of the best resolution is approximately 200 km. As a second step, the local averaged dispersion curves are inverted to vertical sections of S-wave velocities. Since the dispersion curves in the 10–20 s period range are mostly affected by the upper crustal structure, the velocities are estimated to a depth of approximately 25 km. Velocity sections along 43° N latitude are determined separately from Rayleigh and Love wave data. It is shown that the crust under the sea contains a low-velocity sedimentary layer of 2–3 km thickness, localized in the eastern and western deeps, as found earlier from DSS data. Beneath the sedimentary layer, two layers are present with velocity values lying between those of granite and consolidated sediments. Velocities in these layers are slightly lower in the deeps, and the boundaries of the layers are lowered. S-wave velocities obtained from Love wave data are found to be larger than those from Rayleigh wave data, the difference being most pronounced in the basaltic layer. If this difference is attributed to anisotropy, the anisotropy coefficient = (SH - SV)/Smean is reasonable (2–3%) in the upper layers, and exceeds 9% in the basaltic layer.  相似文献   

10.
The April 6, 2009 L’Aquila earthquake was responsible for an “anomalous”, relatively high degree of damage (i.e. Is 7 MCS scale) at Castelvecchio Subequo (CS). Indeed, the village is located at source-to-site distance of about 40 km, and it is surrounded by other inhabited centres to which considerably lower intensities, i.e. Is 5–6, have been attributed. Moreover, the damage was irregularly distributed within CS, being mainly concentrated in the uppermost portion of the old village. Geophysical investigations (ambient seismic noise and weak ground motions analyses) revealed that site effects occurred at CS. Amplifications of the ground motion, mainly striking NE–SW, have been detected at the uppermost portion of the carbonate ridge on which the village is built. Geological/structural and geomechanical field surveys defined that the CS ridge is affected by sets of fractures, joints and shear planes—mainly roughly NW–SE and N–S trending—that are related to the deformation zone of the Subequana valley fault system and to transfer faults linking northward the mentioned tectonic feature with the Middle Aterno Valley fault system. In particular, our investigations highlight that seismic amplifications occur where joints set NW–SE trending are open. On the other hand, no amplification is seen in portions of the ridge where the bedrock is densely fractured but no open joints occur. The fracture opening seems related to the toppling tendency of the bedrock slabs, owing to the local geomorphic setting. These investigations suggest that the detected amplification of the ground motion is probably related to the polarization of the seismic waves along the Castelvecchio Subequo ridge, with the consequent oscillation of the rock slabs perpendicularly to the fractures azimuth.  相似文献   

11.
Structural observations carried out on the volcanic Island of Pantelleria show that the tectonic setting is dominated by NNE trending normal faults and by NW-striking right-lateral strike-slip faults with normal component of motion controlled by a ≈N 100°E oriented extension. This mode of deformation also controls the development of the eruptive fissures, dykes and eruptive centres along NNE–SSW belts that may thus represent the surface response to crustal cracking with associated magma intrusions. Magmatic intrusions are also responsible for the impressive vertical deformations that affect during the Late Quaternary the south-eastern segment of the island and producing a large dome within the Pantelleria caldera complex. The results of the structural analysis carried out on the Island of Pantelleria also improves the general knowledge on the Late Quaternary tectonics of the entire Sicily Channel. ESE–WNW directed extension, responsible for both the tectonic and volcano-tectonic features of the Pantelleria Island, also characterizes, at a greater scale, the entire channel as shown by available geodetic and seismological data. This mode of extension reactivates the older NW–SE trending fault segments bounding the tectonic troughs of the Channel as right-lateral strike-slip faults and produces new NNE trending pure extensional features (normal faulting and cracking) that preferentially develop at the tip of the major strike-slip fault zones. We thus relate the Late Quaternary volcanism of the Pelagian Block magmatism to dilatational strain on the NNE-striking extensional features that develop on the pre-existing stretched area and propagate throughout the entire continental crust linking the already up-welled mantle with the surface.  相似文献   

12.
Field survey of the 1994 Mindoro Island,Philippines tsunami   总被引:2,自引:0,他引:2  
This is a report of the field survey of the November 15, 1994 Mindoro Island, Philippines, tsunami generated by an earthquake (M=7.0) with a strike-slip motion. We will report runup heights from 54 locations on Luzon, Mindoro and other smaller islands in the Cape Verde passage between Mindoro and Luzon. Most of the damage was concentrated along the northern coast of Mindoro. Runup height distribution ranged 3–4 m at the most severely damaged areas and 2–4 in neighboring areas. The tsunami-affected area was limited to within 10 km of the epicenter. The largest recorded runup value of 7.3 m was measured on the southwestern coast of Baco Island while a runup of 6.1 m was detected on its northern coastline. The earthquake and tsunami killed 62 people, injured 248 and destroyed 800 houses. As observed in other recent tsunami disasters, most of the casualties were children. Nearly all eyewitnesses interviewed described the first wave as a leading-depression wave. Eyewitnesses reported that the main direction of tsunami propagation was SW in Subaang Bay, SE in Wawa and Calapan, NE on Baco Island and N on Verde Island, suggesting that the tsunami source area was in the southern Pass of Verde Island and that the wave propagated rapidly in all directions. The fault plane extended offshore to the N of Mindoro Island, with its rupture originating S of Verde Island and propagating almost directly south to the inland of Mindoro, thereby accounting for the relatively limited damage area observed on the N of Mindoro.  相似文献   

13.
The Archibarca lineament is one of several NW–SE-trending transverse lineaments that cut across the Central Andes of Argentina and Chile. Central Andean, Late Miocene–Quaternary subduction-related volcanism is mainly restricted to a 50-km-wide arc forming the approximately N–S axis of the Cordillera, but extends along the transverse lineaments for up to 200 km to the SE. Lineaments are interpreted to be deep-seated, long-lived basement structures or anisotropies, which can control the localization of magmatism and, in some cases, magmatic–hydrothermal ore deposits (e.g., the Escondida porphyry Cu deposit, Chile). As a first step towards exploring the regional-scale controls on magmatism and related mineralization exerted by such structures, the styles of volcanism and near-surface hydrothermal activity along a segment of the Archibarca lineament in the Puna of northwest Argentina are described here. Volcanic structures have been mapped and sampled along a 50-km transect from Cerro Llullaillaco, a large medium-K dacitic Quaternary stratovolcano, to Corrida de Cori, a range of Pliocene–Pleistocene high-K andesitic vents. Apart from a southeastward increase in K content and the predominance of dacitic lavas at Cerro Llullaillaco, the geochemical affinity of late Cenozoic volcanic rocks varies little in time or space. This uniformity extends further SE to Cerro Galán, where published data closely match the results from the study area. In detail, trace element compositions reveal the localized (in both time and space) effects of crustal contamination (recognized as Th>10 ppm), and depth of fractionation (1/Yb>0.7 ppm−1, reflecting garnet residue). Explosive volcanic rocks such as ignimbrites show the strongest indications of crustal contamination, whereas the Cerro Llullaillaco dacite lavas mostly record significant garnet fractionation. Other lavas from the Llullaillaco area, including one flow from Cerro Llullaillaco, do not show garnet control, suggesting that different batches of magma stalled and fractionated at different levels in a thick (60-km) crust prior to eruption. The youngest volcanism in the Corrida de Cori area is represented by olivine–phyric basaltic andesite cinder cones and flows. The ascent of these relatively primitive magmas appears to have been controlled by late Quaternary normal faults, which directly tapped deeply derived melts. The Corrida de Cori volcanic range has experienced intense fumarolic alteration with deposition of abundant sulfate and native sulfur (previously mined at Mina Julia). Deeper levels of hydrothermal alteration have been sampled by an ignimbrite erupted from Cerro Escorial, which, among other lithic clasts, contains numerous fragments of vein quartz. Fluid inclusions in this quartz record evidence for a boiling, high-salinity fluid, which may represent a link between a high temperature magmatic–hydrothermal system at depth (i.e., a porphyry-type system) and shallow-level fumarolic activity. An ignimbrite erupted from Cerro Escorial preserves textures such as internal wave forms between flow units and surface wave morphologies at its distal limits that indicate flow as a series of dense turbulent pulses, which interdigitated and interfered with one another. Lithic lag breccias occur near the base of the flow proximal to the vent, but no air-fall deposits are preserved, probably due to transport of ash far from the vent by strong, high-altitude winds.  相似文献   

14.
Grains of native gold and tellurium were found in siliceous hydrothermally altered rocks in the high-temperature (170–540°C) fumarolic field of the La Fossa volcano (Island of Vulcano). In addition to Au and Te, Pb–Bi sulfides (cannizzarite) and Tl-bromide chloride were found as sublimates in the hottest fumarolic vents of the crater rim. The chemical composition of altered rocks associated with sublimate deposition indicate the presence of a significant concentration of Te (up to 75 ppm), while gold concentrations are very low (<9 ppb). Pb, Bi and Tl are strongly enriched in the hottest and less oxidized fumarolic vents, reaching concentrations of 2186, 146 and 282 ppm, respectively. These elements are transported (generally as chloride complexes) to the surface by volcanic gases, and several of these (Bi, Te, Tl) are originated from magma degassing. The silicic alteration is produced by the flow of fluids with pH<2. High acidity results from introduction of magmatic gases such as SO2, HCl and HF released by the shallow magmatic reservoir of La Fossa volcano. The silicic alteration found at Vulcano may represent an early stage of the `vuggy silica' facies which characterizes the high-sulfidation epithermal ore deposits, confirming the analogies existing between this type of ore deposit and magmatic-hydrothermal systems associated with island-arc volcanoes.  相似文献   

15.
16.
Linear belts 50–100 km in width of long-wavelength positive magnetic anomalies exceeding 500 nT are observed on continental blocks of the Scotia arc. The most developed is the West Coast Magnetic Anomaly which may be traced for more than 1300 km along the Antarctic Peninsula. Comparison of magnetic profile data after low-pass filtering and reduction to pole reveals a striking similarity between the individual anomaly belts. Correlation of the anomalies with positive gravity anomalies, seismic refraction data and geology indicates that the sources are linear batholiths intruded during Mesozoic/Cenozoic subduction. The anomaly belts are truncated at the block margins reflecting Cenozoic fragmentation of a cuspate convergent margin. An early Cenozoic reconstruction, based on the assumption that the batholiths once formed a continuous curvilinear feature, shows a good alignment of Mesozoic strato-tectonic terrains and is compatible with the known history of Scotia Sea opening.  相似文献   

17.
Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the PT conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite–magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na–Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl, lowering the pH of the water. The increasing water–rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.  相似文献   

18.
We present the spatio-temporal distribution of more than 2000 earthquakesthat occurred during the Umbria-Marche seismic crisis, between September 26and November 3, 1997. This distribution was obtained from recordings of atemporary network that was installed after the occurrence of the first two largest shocks (Mw =, 5.7, Mw = 6.0) of September 26. This network wascomposed of 27 digital 3-components stations densely distributed in theepicentral area. The aftershock distribution covers a region of about 40 km long and about2 km wide along the NW-SE central Apennines chain. The activity is shallow,mostly located at less than 9 km depth. We distinguished three main zonesof different seismic activity from NW to SE. The central zone, that containsthe hypocenter of four earthquakes of magnitude larger than 5, was the moreactive and the more complex one. Sections at depth identify 40–50°dipping structures that agree well with the moment tensor focalmechanisms results. The clustering and the migration of seismicity from NW to SE and the generalfeatures are imaged by aftershock distribution both horizontally and at depth.  相似文献   

19.
The Caribou Lake gabbro, part of the Blachford Lake Intrusive Suite accurately dated at –2186±10 mA, has a predominantNW–/SE+ magnetization with a mean, irrespective of sign, ofD=119°,I=50°, 95=5° and a palaeopole 14°N, 064°W,A 95=5°; it has not proved possible to determine if the magnetization is primary. The Easter Island dyke, less well-dated in the range –2200 to –2500 Ma, has a predominantWNW+ magnetization, whose mean, when corrected for an 8° tilt, isD=288°,I=46°, 95=5 and palaeopole is 32°S, 2°W,A 95=5°; the magnetization is probably primary. A vertical magnetization (D), not significantly different from the present field, occurs sporadically in both units and is considered to be Late Phanerozoic in age. Palaeopoles from the Caribou Lake gabbro and the Easter Island dyke, together with those already known from Early Proterozoic intrusives of the Archaean Slave Structural Province, roughly define a swath (the Slave Track) which maps the motion of the Slave Province relative to the geomagnetic axis during this interval. The corresponding array of palaeopoles (the Superior Track) from the Superior Structural Province does not fall in the same place. Hence it would appear that Slave and Superior were not in their present relative positions in the Early Proterozoic in disagreement with arguments that have been made for a fixed supercontinent during much of the Proterozoic. Mid-Proterozoic paleomagnetic signatures indicate that Slave and Superior had assumed their present relative position by about –1750 mA. These Early Proterozoic relative motions are the earliest for which there is palaeomagnetic evidence.Earth Physics Branch Contribution No. 1111.  相似文献   

20.
Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995–1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S–SW and E lower flanks of the volcanic pile, but also in a newly recognised area on the northern flank, possibly tracking a main N–S volcano-tectonic structure. In the same time, the spatial distribution of T°C, TDS, Na, Li, Cl and B allows us to identify the existence of a deeper thermal brine with high salinity, high content of B, Cl and gases (CO2, H2S, CH4) and low K/Na ratio, which is likely hosted in the sedimentary basement. This hot brine reaches the surface only at the periphery of the volcano near the Village of Paternò, where it gives rise to mud volcanoes called “Salinelle di Paternò”. However, the contribution of similar brines to shallower groundwaters is also detected in other sectors to the W (Bronte, Maletto), SW (Adrano) and SE (Acireale), suggesting its possible widespread occurrence beneath Etna. This thermal brine is also closely associated with hydrocarbon fields all around the volcano and its rise, generally masked by the high outflow of the shallow aquifer, may be driven by the ascent of mixed sedimentary–magmatic gases through the main faults cutting the sedimentary basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号