首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field experiments on the CO2 flux of alpine meadow soil in the Qilian Mountain were conducted along the elevation gradient during the growing season of 2004 and 2005. The soil CO2 flux was measured using the Li-6400-09 soil respiration chamber attached to the Li-6400 portable photosynthesis system. The effects of water and heat and roots on the soil CO2 flux were statistically analyzed. The results show that soil CO2 flux along the elevation gradient gradually decreases. The soil CO2 flux was low at night, with lowest value occurring between 0200 and 0600 hours, started to rise rapidly during 0700–0830 hours, and then descend during 1600–1830 hours. The peak CO2 efflux appears during 1100–1600 hours. The diurnal average of soil CO2 efflux was between 0.56 ± 0.32 and 2.53 ± 0.76 μmol m−2 s−1. Seasonally, soil CO2 fluxes are relatively high in summer and autumn and low in spring and winter. The soil CO2 efflux, from the highest to the lowest in the ranking order, occurred in July and August (4.736 μmol m−2 s−1), June and September, and May and October, respectively. The soil CO2 efflux during the growing season is positively correlated with soil temperature, root biomass and soil water content.  相似文献   

2.
Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, and the climate changes it produced, the world’s concerned scientific community has made a huge effort to investigate the global carbon cycle. However, the results reveal that the global CO2 budget cannot be balanced, unless a “missing sink” is invoked. Although numerous studies claimed to find the “missing sink”, none of those claims has been widely accepted. This current study showed that alkaline soil on land are absorbing CO2 at a rate of 0.3–3.0 μmol m−2 s−1 with an inorganic, non-biological process. The intensity of this CO2 absorption is determined by the salinity, alkalinity, temperature and water content of the saline/alkaline soils, which are widely distributed on land. Further studies revealed that high salinity or alkalinity positively affected the CO2 absorbing intensity, while high temperature and water content had a negative effect on the CO2 absorbing intensity of these soils. This inorganic, non-biological process of CO2 absorption by alkaline soils might have significant implications to the global carbon budget accounting.  相似文献   

3.
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m 2 h 1, respectively, in 2004, and 898.59 and 2,154.17 mg m 2 h 1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m 2 h 1 and 0.72 and 1.88 mg m 2 h 1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.  相似文献   

4.
Assessing the global C budget requires a better understanding of the effect of environmental factors on soil CO2 efflux from both experiments and theoretical research, especially in different desertified lands in the Qinghai–Tibet Plateau. Based on the enclosed chamber method, soil CO2 efflux in four different desertified lands and one control [alpine meadow (AM)] were measured in June, August and September, 2008, respectively. Soil CO2 efflux rates at the top, the middle, the bottom of a slope and the flat in front of the slope were obtained at Maduo County. The results showed that average daily soil CO2 efflux rates were 3.72, 2.65, 2.68, 0.59 and 0.37 g m−2 day−1 in the AM, lightly (LDL), moderately (MDL), severely (SDL) and very severely desertified lands (VSDL) during the growing season, respectively. Soil CO2 efflux decreased with the change of desertification. The response of soil CO2 efflux to environmental factors was adequately described by the linear model; models accounted for 76, 65, 72, 59 and 71% of the variability on soil CO2 efflux in the AM, LDL, MDL, SDL and VSDL, respectively. Any environmental factor, however, was insufficient to explain the soil CO2 efflux; the common influence could perfectly reflect soil CO2 efflux response to the desertification change.  相似文献   

5.
地震活动断裂带能够向大气释放大量的温室气体、放射性气体和有毒气体(CO_2、CH_4、Rn和Hg),并对大气环境的影响产生复杂的影响。利用静态暗箱法,对汶川M_s8.0地震破裂带CO_2、Rn和Hg脱气强度进行实地测量,并计算了CO_2和Hg脱气对大气的年贡献量。结果表明:(1)破裂带土壤气中CO_2、CH_4、Rn和Hg异常浓度最大值分别可以达到7.98%、2.38%、524.30k Bq/m~3和161.00ng/m~3;破裂带CO_2、Rn和Hg脱气平均通量是34.95g·m~(-2)d~(-1)、36.11m Bq·m~(-2)s~(-1)和26.56ng·m~(-2)h~(-1),最大值分别达到259.23g·m~(-2)d~(-1)、580.35m Bq·m~(-2)s~(-1)和387.67ng·m~(-2)h~(-1);(2)汶川Ms8.0地震破裂带向大气脱气的CO_2年贡献量是0.95Mt,Hg的年贡献量是15.94kg。汶川Ms8.0地震破裂带破裂CO_2、CH_4、Rn和Hg等的脱气强度,不仅与破裂带渗透率有关,还与断裂带浅部存在的气藏、煤层以及磷矿层等气体源有重要的联系。  相似文献   

6.
Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m−1°C−1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m−1°C−1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m−1°C−1, respectively.  相似文献   

7.
This paper estimates CO2 fluxes in a municipal site for final disposal of solid waste, located in Gualeguaychu, Argentina. Estimations were made using the accumulation chamber methods, which had been calibrated previously in laboratory. CO2 fluxes ranged from 31 to 331 g m−2 day−1. Three different populations were identified: background soil gases averaging 46 g m−2 day−1, intermediate anomalous values averaging 110 g m−2 day−1 and high anomalous values averaging 270 g m−2 day−1. Gas samples to a depth of 20 cm were also taken. Gas fractions, XCO2 < 0.1, XCH4 < 0.01, XN2 ~0.71 and XO2 ~0.21, δ13C of CO2 (−34 to −18‰), as well as age of waste emplacement, suggest that the study site may be at the final stage of aerobic biodegradation. In a first approach, and following the downstream direction of groundwater flow, alkalinity and δ13C of dissolved inorganic carbon (−15 to 4‰) were observed to increase when groundwater passed through the disposal site. This suggests that the CO2 generated by waste biodegradation dissolves or that dissolved organic matter appears as a result of leachate degradation.  相似文献   

8.
A multi-channel, steady-state flow-through (SSFT), soil-CO2 flux monitoring system was modified to include a larger-diameter vent tube and an array of inexpensive pyroelectric non-dispersive infrared detectors for full-range (0–100 %) coverage of CO2 concentrations without dilution. Field testing of this system was then conducted from late July to mid-September 2010 at the Zero Emissions Research and Technology project site located in Bozeman, Montana, USA. Subsequently, laboratory testing was conducted at the Pacific Northwest National Laboratory in Richland, WA, USA using a flux bucket filled with dry sand. In the field, an array of 25 SSFT and 3 non-steady-state (NSS) flux chambers was installed in a 10 × 4 m area, the long boundary of which was directly above a shallow (2-m depth) horizontal injection well located 0.5 m below the water table. Two additional chambers (one SSFT and one NSS) were installed 10 m from the well for background measurements. Volumetric soil moisture sensors were installed at each SSFT chamber to measure mean moisture levels in the top 0.15 m of soil. A total flux of 52 kg CO2 day?1 was injected into the well for 27 days and the efflux from the soil was monitored by the chambers before, during, and for 27 days after the injection. Overall, the results were consistent with those from previous years, showing a radial efflux pattern centered on a known “hot spot”, rapid responses to changes in injection rate and wind power, evidence for movement of the CO2 plume during the injection, and nominal flux levels from the SSFT chambers that were up to sevenfold higher than those measured by adjacent NSS chambers. Soil moisture levels varied during the experiment from moderate to near saturation with the highest levels occurring consistently at the hot spot. The effects of wind on measured flux were complex and decreased as soil moisture content increased. In the laboratory, flux-bucket testing with the SSFT chamber showed large measured-flux enhancement due to the Venturi effect on the chamber vent, but an overall decrease in measured flux when wind also reached the sand surface. Flux-bucket tests at a high flux (comparable to that at the hot spot) also showed that the measured flux levels increase linearly with the chamber-flushing rate until the actual level is reached. At the SSFT chamber-flushing rate used in the field experiment, the measured flux in the laboratory was only about a third of the actual flux. The ratio of measured to actual flux increased logarithmically as flux decreased, and reached parity at low levels typical of diffusive-flux systems. Taken together, the results suggest that values for advective CO2 flux measured by SSFT and NSS chamber systems are likely to be significantly lower than the actual values due to back pressure developed in the chamber that diverts flux from entering the chamber. Chamber designs that counteract the back pressure and also avoid large Venturi effects associated with vent tubes, such as the SSFT with a narrow vent tube operated at a high chamber-flushing rate, are likely to yield flux measurements closer to the true values.  相似文献   

9.
Fluxes of carbon dioxide, water vapor, and heat were measured above crop canopy using the eddy covariance method during the 2008 maize growing season, over an agricultural field within an oasis located in the middle reaches of Heihe River basin, northwest China. The values for friction velocity, the Monin–Obukhov stability parameter, and energy balance closure indicated that the eddy covariance system at this study site provided reliable flux estimates. Results from measurements showed that the mean sensible heat flux was 70 W m−2 with a maximum value of 164 W m−2 (May) and a minimum value of 45 W m−2 (July) during the maize growing season. In contrast, the mean latent heat was 278 W m−2 with a maximum value of 383 W m−2 (July) and minimum of 101 W m−2 (May). The mean downward soil heat flux was 55 W m−2 with a maximum value of 127 W m−2 (May) and minimum of 49 W m−2 (July). The magnitude of mean daytime net CO2 uptake was −11.50 μmol m−2 s−1 with a maximum value of −28.32 μmol m−2 s−1 (18 and 19 July) and a minimum values of −0.32 μmol m−2 s−1 (18 and 19 May). Correlation was observed between daytime half-hourly carbon dioxide flux and canopy conductance. In addition, the relationship between carbon dioxide flux and photosynthetically active radiation for selected days during different stages of maize growing season indicated the carbon dioxide flux uptake by the canopy was controlled by actual photosynthetic activity related to the variation of green leaf area index for the different growing stages.  相似文献   

10.
In highlands of semiarid Turkey, ecosystems have been significantly transformed through human actions, and today changes are taking place very rapidly, causing harmful consequences such as soil degradation. This paper examines two neighboring land use types in Indagi Mountain Pass, Cankiri, Turkey, to determine effects of the conversion of Blackpine (Pinus nigra Arn. subsp. pallasiana) plantation from grassland 40 years ago on soil organic carbon (SOC) and soil erodibility (USLE-K). For this purpose, a total of 302 disturbed and undisturbed soil samples were taken at irregular intervals from two sites and from two soil depths of 0–10 cm (D1) and 10–20 cm (D2). In terms of SOC, conversion did not make any statistical difference between grassland and plantation; however, there were statistically significant differences with soil depth within each land use, and SOC contents significantly decreased with the soil depth (P < 0.05) and mostly accumulated in D1. SOC values were 2.4 and 1.8% for grassland and 2.8 and 1.6% for plantation, respectively, at D1 and D2. USLE-K values also statistically differed significantly with the land use, and in contrast to the statistics of SOC, there was no change in USLE-K with the soil depth. Since USLE-K was estimated using SOC, hydraulic conductivity (HC) and soil textural composition––sand (S), silt (Si), and clay (C) contents of soils––as well as SOC did not change with the land use, we ascribed the changes of USLE-K with the land uses to the differences in the HC as strongly affected by the interactions between SOC and contents of S, Si, and C. On an average, the soil of the grassland (USLE-K = 0.161 t ha h ha−1 MJ−1 mm−1) was more erodible than those of the plantation (USLE-K = 0.126 t ha h ha−1 MJ−1 mm−1). Additionally, topographic factors, such as aspect and slope, were statistically effective on spatial distribution of the USLE-K and SOC.  相似文献   

11.
This study reports the first field test of a multi-channel, auto-dilution, steady-state, soil–CO2 flux monitoring system being developed to help understand the pathways by which fugitive CO2 from a geologic sequestration site migrates to the surface. The test was conducted from late August through mid-October 2008 at the Zero Emissions Research and Technology project site located in Bozeman, MT. Twenty steady-state and five non-steady-state flux chambers were installed in a 10 × 15 m area, one boundary of which was directly above a shallow (2-m depth) horizontal injection well located 0.5 m below the water table. A total flux of 52 kg CO2 day−1 was injected into the well for 13 days and the efflux from the soil was monitored by the chambers before, during, and for 33 days after the injection. The results showed a rapid increase in soil efflux once injection started, with maximal values reached within 3–7 days in most chambers. Efflux returned to background levels within a similar time period after injection ceased. A radial efflux pattern was observed to at least 2 m from the injection well, and evidence for movement of the CO2 plume during the injection, presumably due to groundwater flow, was seen. The steady-state chambers yielded very stable data, but threefold to fivefold higher fluxes than the non-steady-state chambers. The higher fluxes were attributed to vacuum induced in the steady-state chambers by narrow vent tubes. High winds resulted in significant decreases in measured soil CO2 efflux, presumably by enhancing efflux from soil outside the chambers.  相似文献   

12.
Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.  相似文献   

13.
Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha−1 year−1; MN, 100 kg N ha−1 year−1; LN, 50 kg N ha−1 year−1) on soil respiration compared with non-fertilization (CK, 0 kg N ha−1 year−1), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q 10 varied within 1.70–1.74) but was slightly reduced in MN treatment (Q 10 = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July–September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007–June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m−2 year−1). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July–September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).  相似文献   

14.
Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-year timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to near-infrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9, 2008, pure carbon dioxide gas was released through a 100-m long horizontal injection well, at a flow rate of 300 kg day−1. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a “FieldSpec Pro” spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants. Four to five days after the injection began, stress was observed in the spectral signatures of plants within 1 m of the well. After approximately 10 days, moderate to high amounts of stress were measured out to 2.5 m from the well. This spatial distribution corresponded to areas of high CO2 flux from the injection. Airborne hyperspectral imagery, acquired by Resonon, Inc. of Bozeman, MT using their hyperspectral camera, also showed the same pattern of plant stress. Spectral signatures of the plants were also compared to the CO2 concentrations in the soil, which indicated that the lower limit of soil CO2 needed to stress vegetation is between 4 and 8% by volume.  相似文献   

15.
Surface coal mining inevitably deforests the land, reduces carbon (C) pool and generates different land covers. To re-establish the ecosystem C pool, post-mining lands are often afforested with fast-growing trees. A field study was conducted in the 5-year-old unreclaimed dump and reclaimed coal mine dump to assess the changes in soil CO2 flux and compared with the reference forest site. Changes in soil organic carbon (SOC) and total nitrogen stocks were estimated in post-mining land. Soil CO2 flux was measured using close dynamic chamber method, and the influence of environmental variables on soil CO2 flux was determined. Woody biomass C and SOC stocks of the reference forest site were threefold higher than that of 5-year-old reclaimed site. The mean soil CO2 flux was highest in 5-year-old reclaimed dump (2.37 μmol CO2 m?2 s?1) and lowest in unreclaimed dump (0.21 μmol CO2 m?2 s?1). Soil CO2 flux was highly influenced by environmental variables, where soil temperature positively influenced the soil CO2 flux, while soil moisture, relative humidity and surface CO2 concentration negatively influenced the soil CO2 flux. Change in soil CO2 flux under different land cover depends on plant and soil characteristics and environmental variables. The study concluded that assessment of soil CO2 flux in post-mining land is important to estimate the potential of afforestation to combat increased emission of soil CO2 at regional and global scale.  相似文献   

16.
Between 1996 and 2001 an experimental set up in a chaparral community near San Diego, CA, examined various plant and ecosystem responses to CO2 concentrations ranging from 250 to 750 μl l− 1. These experiments indicated a significant increase in soil C sequestration as CO2 rose above the ambient levels. In 2003, two years after the cessation of the CO2 treatments, we returned to this site to examine soil C dynamics with a particular emphasis on stability of specific pools of C. We found that in as little as two years, C content in the surface soils (0–15 cm) of previously CO2 enriched plots had dropped to levels below those of the ambient and pretreatment soils. In contrast, C retained in response to CO2 enrichment was more durable in the deeper soil layers (> 25 cm deep) where both organic and inorganic C were on average 26% and 55% greater, respectively, than C content of ambient plots. Using stable isotope tracers, we found that treatment C represented 25% of total soil C and contributed to 55% of soil CO2 efflux, suggesting that most of treatment C is readily accessible to decomposers. We also found that, C present before CO2 fumigation was decomposed at a faster rate in the plots that were exposed to elevated CO2 than in those exposed to ambient CO2 levels. To our knowledge, this is the first report that allows for a detail accounting of soil C after ceasing CO2 treatments. Our study provides a unique insight to how stable the accrued soil C is as CO2 increases in the atmosphere.  相似文献   

17.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

18.
Coal handling, crushing, washing, and other processes of coal beneficiation liberate coal particulate matter, which would ultimately contaminate the nearby soils. In this study, an attempt was made to determine the status of soil bio-indicators in the surroundings of a coal beneficiation plant, (in relation to a control site). The coal beneficiation plant is located at Sudamudih, and the control site is 5 km away from the contaminated site, which is located in the colony of Central Institute of Mining and Fuel Research Institute, Digwadih, Dhanbad. In order to estimate the impact of coal deposition on soil biochemical characteristics and to identify the most sensitive indicator, soil samples were taken from the contaminated and the control sites, and analyzed for soil organic carbon (SOC), soil N, soil basal respiration (BSR), substrate-induced respiration (SIR), and soil enzymes like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidase (PER). Coal deposition on soils improved the SOC from 10.65 to 50.17 g kg−1, CAT from 418.1 to 804.11 μg H2O2 g−1 h−1, BSR from 8.5 to 36.15 mg CO2–C kg−1 day−1, and SIR from 24.3 to 117.14 mg CO2–C kg−1 day−1. Soils receiving coal particles exhibited significant decrease in DHA (36.6 to 4.22 μg TPF g−1 h−1), PHE (0.031 to 0.017 μM g−1 h−1), PER (0.153 to 0.006 μM g−1 h−1), and soil N (55.82 to 26.18 kg ha−1). Coal depositions significantly (P < 0.01) decreased the DHA to 8.8 times, PHE to 1.8 times, and PER to 25.5 times, but increased the SOC to 4.71 times, CAT to 1.9 times, SIR to 4.82 times, and BSR to 4.22 times. Based on principal component analysis and sensitivity test, soil peroxidase (an enzyme that plays a vital role in the degradation of the aromatic organic compounds) is found to be the most important indicator that could be considered as biomarkers for coal-contaminated soils.  相似文献   

19.
The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.  相似文献   

20.
Soil salinity and sodicity are environmental problems in the shrimp farming areas of the Cai Nuoc district, Ca Mau province, Vietnam. In 2000, farmers in the district switched en masse from rice cropping to shrimp culture. Due to recent failure in shrimp farming, many farmers wish to revert to a rotational system with rice in the wet season and shrimps in the dry season. So far, all their attempts to grow rice have failed. To assess soil salinity and sodicity, 25 boreholes in shrimp ponds were analysed in four consecutive seasons from 2002 to 2004. The results showed that soil salinity was quite serious (mean ECe 29.25 dS m−1), particularly in the dry season (mean ECe 33.44 dS m−1). In the wet season, significant amounts of salts still remained in the soil (mean ECe 24.65 dS m−1) and the highest soil salinity levels were found near the sea. Soil sodicity is also a problem in the district (exchangeable sodium percentage range 9.63–72.07%). Sodicity is mainly a phenomenon of topsoils and of soils near the sea. Both soil salinity and sodicity are regulated by seasonal rainfall patterns. They could together result in disastrous soil degradation in the Cai Nuoc district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号