首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用三维激发-发射荧光光谱(3D-EEMs),结合平行因子分析(PARAFAC),研究了2015年12月至2020年1月停靠上海洋山港和江苏省江阴港的42艘入境船舶压载水中荧光溶解有机物(FDOM)的组成特征及其来源,并探讨了FDOM用于鉴别置换和未置换压载水的可行性。结果显示,船舶压载水中FDOM主要由3种荧光组分组成:类色氨酸荧光组分C1,λex为275 nm,λem为332 nm;UVB类腐殖质组分C2,λex为290和315 nm,λem为386 nm;UVA类腐殖质组分C3,λex为250和360 nm,λem为446 nm。组分C1在船舶压载水FDOM中荧光强度百分比最高,其次为组分C3,组分C2最低。显著性分析显示,未置换压载水中组分C1显著高于置换压载水(p<0.05)的,而组分C2和C3则无显著差异(p>0.05)。荧光指数分析表明,未置换压载水FDOM受陆源输入和微生物活动的共同影响,而置换压载水由于远离近岸,水体生物活动为...  相似文献   

2.
秋季胶州湾有色溶解有机物荧光特性研究及其来源分析   总被引:1,自引:0,他引:1  
利用三维荧光光谱(EEMs)-平行因子分析(PARAFAC)技术研究了秋季胶州湾有色溶解有机物(CDOM)的荧光成分组成、分布特征及来源。PARAFAC模型解析出胶州湾CDOM由2类5个荧光组分组成,即类腐殖质成分C1(355nm/430nm)、C2(320nm/390nm)、C3(380nm/465nm)、C4(420(330)nm/505nm)及类蛋白质成分C5(280/325nm)。类腐殖质成分C1、C2、C3和C4的平面分布模式基本一致,呈现由近岸海域向湾中心海域逐渐减小的趋势,而类蛋白质成分C5则是由湾东北部近岸海域向西南部海域呈逐渐减小的趋势。分析表明,秋季胶州湾CDOM类腐殖质成分C1、C2、C3和C4的主要来源为陆源输入,而类蛋白质成分C5主要受城市排污的影响。系统聚类分析表明,以团岛南端和红岛西侧连线为界,所有采样站位被分为两类,分界线西部区域站位CDOM各荧光成分相对含量分别为C1:31.8%~35.5%,C2:30.3%~33.7%,C3:17.1%~20.2%,C4:4.5%~5.2%,C5:9.6%~12.5%;分界线东部区域站位CDOM各荧光成分相对含量分别为C1:30.6%~34.6%,C2:28.8%~32.7%,C3:17.0%~19.1%,C4:3.3%~4.8%,C5:12.1%~18.2%。西部区域CDOM具有较高的C4含量和较低的C5含量,大沽河等河流的陆源输入特征明显,而东部区域CDOM则具有较高的C5含量和较低的C4含量,反映该区域受城市排污影响显著。另外,秋季胶州湾CDOM的HIX范围为1.8~3.2之间,较小的腐殖化因子值反映了秋季胶州湾CDOM的腐殖化程度高较低,在环境中存在时间较短。  相似文献   

3.
渤海有色溶解有机物的三维荧光光谱特征   总被引:1,自引:0,他引:1  
本文采用三维荧光光谱(FEEMs)技术, 结合FEEMs特定光谱区荧光区域积分(FRI)法, 测定了2010年9月中旬渤海23个站位不同层次的有色溶解有机物(CDOM)样品, 以探讨渤海CDOM组分的水平和垂直分布特征以及控制因素。FEEMs的总累计积分和各荧光团的荧光区域积分比例可作为表征海域CDOM分布特征的一个良好指标, 且优于常规的单点荧光法。结果表明, 渤海CDOM中含有类腐殖质荧光团A、B、C, 类色氨酸荧光团M, 以及类酪氨酸荧光团N。从沿海至外海, CDOM总累计积分值不断减小。其中紫外区类腐殖质A的荧光区域积分比例无显著变化; 可见区陆源类腐殖质B的荧光区域积分比例也不断减小, 表明陆源输入为沿海区域CDOM的主要来源; 而可见区海源类腐殖质C、类蛋白质荧光团M、N的荧光区域积分比例和叶绿素浓度不断升高, 显示了生物活动的贡献。从层次来看, 沿海CDOM的总累计积分为: 表层>底层>中层; 而外海CDOM的总累计积分呈相反趋势。其中, 紫外区类腐殖质A的荧光区域积分比例在整个海域最小, 垂直分布无明显变化; 可见区陆源类腐殖质B的荧光区域积分比例与沿海CDOM总累计积分相一致; 可见区海源类腐殖质C、类蛋白质M和N的荧光区域积分比例与外海CDOM总累计积分相一致, 这反映了CDOM的垂直分布是由光化学反应、生物作用和沉积物再悬浮共同控制的特性。  相似文献   

4.
利用三维荧光光谱-平行因子分析法(EEMs-PARAFAC)技术结合多元统计方法研究了莱州湾海域春季(2020年5月)和秋季(2020年10月)荧光溶解有机物(FDOM)的来源及时空分布特征。结果显示莱州湾海域FDOM由2类共4个荧光组分组成:C1、C4为类蛋白质组分,分别为色氨酸和酪氨酸; C2、C3为类腐殖质组分。并对各组分的来源及分布特征分析:春季FDOM分布主要受到陆源输入的影响,其中表层C1、C2、C3也受微生物活动影响。秋季表层C1、C2、C3分布受到陆源输入和浮游植物生产共同影响,秋季表层C4主要受生物现场生产影响,秋季底层C1、C2、C3主要受陆源输入影响,C4受陆源输入和浮游植物生产共同影响。各荧光组分在表层的季节性差异主要是由于春季部分FDOM经陆源输入后受偏南风作用,在莱州湾西部及南部海域扩散。FDOM在底层的季节性差异主要由于受到沉积物再悬浮的影响。HIX高值分布表明莱州湾西部和南部FDOM受陆源输入影响显著,BIX高值分布表明莱州湾远海FDOM受生物活动影响程度较高。总体上,陆源输入影响莱州湾FDOM分布的主要因素。  相似文献   

5.
于2019年3月、7月和10月对长江口及邻近海域有色溶解有机物(CDOM)的分布及河口混合行为进行分析研究。通过对盐度、吸收光谱斜率S275~295、吸收系数aCDOM(355)以及叶绿素a的分析发现,在河口内低盐度区,7月淡水流量大,陆源输入量最大,aCDOM(355)值最高,3月CDOM来源主要受陆源输入和浮游植物生产活动的影响,aCDOM(355)值较10月高;在口外高盐度区,3月和7月的aCDOM(355)值相近,均低于10月,CDOM分布主要受浮游植物生产活动的影响。利用三维荧光光谱?平行因子分析方法共鉴定出4个荧光组分:类蛋白质组分C1(280/330 nm)、类腐殖质组分C2(300/350 nm)、类腐殖质组分C3(260/465 nm)和类腐殖质组分C4(320/410 nm)。在3月、7月及10月,4个荧光组分强度由长江口内到口外呈递减趋势,受陆源输入和浮游植物生产活动的影响,平均荧光强度的季节变化总体上来说,由大到小依次为7月、10月、3月。3个季节CDOM荧光组分均存在偏离理论稀释线的现象,说明CDOM的来源(陆源输入、沉积物再悬浮和现场生物活动)和去除(被颗粒物吸附、光降解和细菌降解)机制复杂多变,揭示了长江口区域CDOM在不同时空下的不保守混合行为。  相似文献   

6.
通过测定有色溶解有机物(CDOM)的吸收光谱、荧光光谱、溶解有机碳(DOC)浓度,探究了2014年夏季长江口CDOM的来源及河口混合行为。结合吸收系数a(355)、光谱斜率S275-295、比紫外吸光度SUVA254与盐度的关系,结果表明南港水道受黄浦江输入影响显著,北港水道由长江径流控制呈保守性混合行为,二者CDOM的物质结构性质较为相似。DOC的浓度可通过a(275)与a(295)模拟估算:ln[DOC]=4.94–0.87ln[a(275)]+0.90ln[a(295)],a(275)8.0 m–1;ln[DOC]=4.77–6.79ln[a(275)]+8.05ln[a(295)],a(275)≥8.0 m–1。模拟结果表明,在长江口及邻近海域,CDOM对DOC具有示踪意义。利用三维荧光光谱-平行因子分析(EEMs-PARAFAC)技术,可得到夏季长江口FDOM含有3个类腐殖质组分(C2,C4和C5)和3个类蛋白质组分(C1,C3和C6)。类腐殖质组分具有相似的来源及地球化学行为,且与a(355)及盐度存在显著相关性;类蛋白质组分则与a(355)及盐度之间无显著相关性,揭示其与区域内微生物的活动有关。  相似文献   

7.
本研究利用吸收光谱和荧光激发-发射矩阵光谱-平行因子分析(EEMs-PARAFAC),研究了养马岛附近海域海水中有色溶解有机质(CDOM)的浓度、组成、来源和生物可利用性,并估算了浮游植物生长繁殖对CDOM及具有生物可利用性CDOM的贡献。结果表明,表、底层海水中CDOM浓度(以吸收系数a350计)平均值分别为1.62±0.42 m-1和1.30±0.47 m-1,光谱斜率(S275-295)平均值分别为0.022±0.003 nm-1和0.023±0.003 nm-1。利用PARAFAC模型识别出4种荧光组分,分别为陆源类腐殖酸C1、类色氨酸C2、类酪氨酸C3和微生物源类腐殖酸C4。荧光指数(FIX)、腐殖化指数(HIX)和生物指数(BIX)显示,CDOM受陆源输入和海洋自生源的综合影响。降解实验结果显示,表、底层海水中生物可利用性CDOM百分比(%△a350)平均值分别为(23.36%±17.94%)和(8.93%±20.30%)。C1、C2和C4组分的荧光强度在培养之后降低,而C3组分的荧光强度上升。各荧光组分生物可利用性依次递减的顺序为:%△C1(23.75%±8.96%)>%△C4(20.83%±11.71%)>%△C2(11.67%±38.87%)>%△C3(-29.61%±39.90%),显示培养之后CDOM的平均分子量和腐殖化程度降低。表层海水中a350、%△a350与Chl a之间存在显著线性相关关系,据此可以估算出浮游植物生长繁殖对CDOM的贡献为36.9%,对具有生物可利用性CDOM的贡献为85.0%。  相似文献   

8.
西太平洋冬季上层水体有色溶解有机物的分布和转化特征   总被引:3,自引:1,他引:2  
王泽华  邹立  陈洪涛  史洁  杨阳 《海洋学报》2018,40(10):180-189
为深入解析西太平洋溶解有机碳的生物地球化学过程,本研究于2015年12月至2016年1月,开展了西太平洋上层水体有色溶解有机物(CDOM)吸收光谱和荧光光谱特征研究。研究结果表明,西太平洋上层水体CDOM吸收系数a(320)变化范围为0.01~1.07 m-1,平均值为0.18 m-1;其较高值位于100~200 m水层,表层的海水相对含量较低,主要以有机物的光化学分解为主。采用PARAFAC分析CDOM三维荧光光谱特征,得到1种类腐殖质组分C2(252(310 nm)/405 nm)及2种类蛋白组分C1(224(276 nm)/335 nm)和C3(224(260 nm)/300 nm),其中类腐殖质荧光组分占总荧光强度的11%~22%,蛋白质荧光组分占总荧光强度的78%~89%,蛋白质荧光中类色氨酸和类络氨酸组分对荧光强度的贡献相当。洋流在大尺度上控制西太平洋CDOM的分布特征,两流交界处和环流形成区域的CDOM相对含量较高,荧光信号较强。西太上层水体CDOM相对含量和荧光信息,与温度、盐度、DO和营养盐等理化因素之间的相关分析结果表明,CDOM主要成分类蛋白质的产生主要受上层水体初级生产过程控制。  相似文献   

9.
刘可  杨琳  杨桂朋  张婧 《海洋学报》2020,42(10):121-131
对2018年秋季西太平洋130°E断面上层水体有色溶解有机物(CDOM)的光学特性及光降解行为进行了研究。结果表明,西太平洋上层水体CDOM的吸收系数a(320)变化范围为0.025~0.64 m?1,平均值为(0.20±0.08) m?1;a(320)在表层相对较低,主要与表层CDOM的光漂白去除有关;在100~200 m水层较高,主要与次表层的生物活动有关。利用三维荧光光谱?平行因子分析技术,识别出两种荧光组分:类酪氨酸组分C1和海洋类腐殖质组分C2。C1主要源于棉兰老冷涡?上升流所带来的营养物质对浮游植物生产活动和微生物活动的促进作用;C2主要源于黑潮所带来的海洋类腐殖的输入。光化学降解实验发现,CDOM吸收值的损失主要发生在紫外波段;光照60 h后,类酪氨酸组分相较于海洋类腐殖质组分更易发生光降解;且光降解是西太平洋海域CDOM的重要去除途径。  相似文献   

10.
珠江口磨刀门溶解有机物CDOM 三维荧光光谱特征   总被引:1,自引:0,他引:1  
采用三维荧光对珠江口磨刀门夏秋季有色溶解有机物(CDOM)时空变化进行研究,分析其组成及荧光强度。结果表明, CDOM 三维荧光峰谱包括 UV 类腐殖质 A、陆源 Vis 类腐殖质 C 和海源 Vis类腐殖质M,以及类蛋白质T。在入海过程中,其组成未发生变化,但其荧光强度随盐度增加逐渐减小,反映了CDOM主要来源是陆源,并且主要受海水物理稀释控制,是一种典型的保守混合行为。在定点站位涨落潮周期中, CDOM的荧光强度不仅受到海水稀释的作用,表层水体CDOM受到紫外线的光降解作用,同时中层水体CDOM受到浮游植物的影响,反映了盐度、紫外线强度、生物活动对CDOM具有的共同影响。  相似文献   

11.
In this study, the CDOM absorption coefficient at 350 nm [aCDOM(350)] and CDOM excitation emission matrix (EEM) fluorescence were used to estimate annual fluxes of dissolved organic carbon (DOC) from the Cape Fear River to Long Bay in the South Atlantic Bight. Water samples were collected during a 3.5 year period, from October 2001 through March 2005, in the vicinity of the Cape Fear River (CFR) outlet and adjacent Onslow Bay (OB). Parallel factor analysis (PARAFAC) of CDOM EEM spectra identified six components: three terrestrial humic-like, one marine humic-like and two protein-like. Empirical relationships were derived from the PARAFAC model between DOC concentration and aCDOM(350), total fluorescence intensity and the intensities of respective EEM components. DOC concentration and CDOM optical parameters were very well correlated and R2 values ranged from 0.77 to 0.90. Regression analyses revealed that the non-absorbing DOC fraction, in DOC concentration estimated from CDOM optical parameters, varied with the qualitative composition of the CDOM. DOC concentration and intensity of the humic-like CDOM components characterized by excitation maxima at longer wavelengths have significantly higher estimated non-absorbing DOC compared to the analogous relationships between DOC and intensity of the humic-like CDOM components characterized by excitation maxima at shorter wavelengths. The relationships between DOC concentration and intensity of one of the protein-like components resulted in significantly reduced non-absorbing DOC fraction in DOC concentration estimation. Results of regression analyses between fluorescence intensities of specific EEM components and CDOM-specific absorption coefficients suggest that the relative proportion of humic-like CDOM components (characterized by excitation maximum at longer wavelengths) and the main protein-like component have the most impact on the values of a?CDOM(350). Based on the relationships between aCDOM(350), Cape Fear River flow, and DOC concentrations, DOC fluxes were estimated for 2002, 2003 and 2004. DOC fluxes varied from 1.5 to 6.2 × 1010 g C yr? 1, depending on river flow.  相似文献   

12.
Fluorescent dissolved organic matter (DOM), a fraction of chromophoric DOM, is known to be produced in the deep ocean and is considered to be bio-refractory. However, the factors controlling fluorescence properties of DOM in the deep ocean are still not well understood. In this study, we determined the fluorescence properties of DOM in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). One protein-like, two humic-like components, and one uncertain component, which might be derived from a fluorometer artifact, were identified by EEM-PARAFAC. Fluorescence intensity levels of the protein-like component were highest in the surface waters, decreased with depth, but did not change systematically in the bathypelagic layer (1000 m - bottom). Fluorescence characteristics of the two humic-like components were similar to those traditionally defined as marine and terrestrial humic-like fluorophores. The fluorescence intensity levels of the two humic-like components were lowest in the surface waters, increased with depth in the mesopelagic layer (200 - 1000 m), and then slightly decreased with depth in the bathypelagic layer. The ratio of the two humic-like components remained in a relatively narrow range in the bathypelagic layer compared to that in the surface layer, suggesting a similar composition of humic-like fluorophores in the bathypelagic layer. In addition, the fluorescence intensities of the two humic-like components were linearly correlated to apparent oxygen utilization (AOU) in the bathypelagic layer, suggesting that both humic-like components are produced in situ as organic matter is oxidized biologically. These findings imply that optical characteristics of humic-like fluorophores once formed might not be altered further biologically or geochemically in the deep ocean. On the other hand, relationships of fluorescence intensities with AOU and Fe(III) solubility were different between the two humic-like components in the mesopelagic layer, suggesting different environmental dynamics and biogeochemical roles for the two humic-like components.  相似文献   

13.
The purpose of the work presented in this paper was to study the components of fluorescent organic matter (FOM) resulting from multi-way decomposition of excitation-emission matrices (EEMs) and to find out how their relative distributions and amounts were affected by the changing hydrography and productivity in the Southern Ocean. Data were collected during the austral summer 97/98 along the 6°E meridian covering the area between the spring ice edge and the Subtropical Front. By multiway PARAllel FACtor (PARAFAC) analysis, fluorescence EEMs could be decomposed into components that could be used for relative quantification. It is shown that three components suffice to model the fluorescence in this specific region. Two of the components obtained were protein-like and directly related to in-situ production/degradation; they were correlated with chlorophyll a, and were found to mix down to the core of the Antarctic intermediate water (AAIW) in the Subtropical Front. One component was classified as UV/Visible humic-like and showed a distribution that was very closely related to the qsu-calibrated fluorescence, i.e. indicative of terrestrial input, and of long term processes in the ocean. We suggest that the UV/Visible humic-like component consists of refractory material that is not produced or degraded significantly. It is concluded that a small number of components from PARAFAC analysis were satisfactory representatives of the major types of UV-blue fluorescent structural units present. The qualitative and quantitative results from the PARAFAC model also correlated well with other chemical and physical parameters.  相似文献   

14.
Dynamics of fluorescent dissolved organic matter (FDOM) in ocean environments has received attention over the past few decades. Although it has appeared that in situ production of oceanic FDOM is mainly due to bacteria, the production and bio- and photodegradation processes of bacterial FDOM have not been elucidated. In this study, a culture experiment with bacteria was carried out to assess the production and biodegradation processes of bacterial FDOM. Photodegradation of bacterial FDOM and dissolved organic carbon (DOC) was also examined by exposure to a solar simulator. Bacterial FDOM consists of six components which were determined by parallel factor analysis (PARAFAC). Fluorescence intensities of protein-like FDOM increased with the bacterial biomass, but the increases of humic-like FDOM lagged behind the protein-like FDOM by 5–10 days. Exposure to simulated sunlight caused significant decreases in fluorescence intensities of all components; 52–94% of the initial intensities were lost during 24 h. While, the DOC concentration exhibited a small decrease through the experiment (1.9–11.1%). These results showed that photodegradability of bacteria derived DOC was much less than the fluorescence, indicating that the lifetime of bacteria-derived DOC is much longer than the length estimated by the fluorescence. The role of photobleached FDOM derived from bacteria may be significant in the biogeochemical cycle at the surface layer.  相似文献   

15.
Systematic water sampling for characterization of chromophoric dissolved organic matter (CDOM) in the coastal South Atlantic Bight, was conducted as part of the long term Coastal Ocean Research and Monitoring Program (CORMP). Water samples were collected during a 3.5 year period, from October 2001 until March 2005, in the vicinity of the Cape Fear River (CFR) outlet and in adjacent Onslow Bay (OB). During this study there were two divergent hydrological and meteorological conditions in the CFR drainage area: a severe drought in 2002, followed by the very wet year of 2003. CDOM was characterized optically by the absorption coefficient at 350 nm, the spectral slope coefficient (S), and by Excitation Emission Matrix (EEM) fluorescence. Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra and six components were identified: three terrestrial humic-like components, one marine humic-like component and two protein-like components. Terrestrial humic-like components contributed most to dissolved organic matter (DOM) fluorescence in the low salinity plume of the CFR. The contribution of terrestrial humic-like components to DOM fluorescence in OB was much smaller than in the CFR plume area. Protein-like components contributed significantly to DOM fluorescence in the coastal ocean of OB and they dominated DOM fluorescence in the Gulf Stream waters. Hydrological conditions during the observation period significantly impacted both concentration and composition of CDOM found in the estuary and coastal ocean. In the CFR plume, there was an order of magnitude difference in CDOM absorption and fluorescence intensity between samples collected during the drought compared to the wet period. During the drought, CDOM in the CFR plume was composed of equal proportions of terrestrial humic-like components (ca. 60% of the total fluorescence intensity) with a significant contribution of proteinaceous substances (ca. 20% of the total fluorescence). During high river flow, CDOM was composed mostly of humic substances (nearly 75% of total fluorescence) with minor contributions by proteinaceous substances. The impact of changes in fresh water discharge patterns on CDOM concentration and composition was also observed in OB, though to a lesser degree.  相似文献   

16.
The southern Changjiang River Estuary has attracted considerable attention from marine scientists because it is a highly biologically active area and is biogeochemically significant.Moreover,land-ocean interactions strongly impact the estuary,and harmful algal blooms(HABs) frequently occur in the area.In October 2010 and May 2011,water samples of chromophoric dissolved organic matter(CDOM) were collected from the southern Changjiang River Estuary.Parallel factor analysis(PARAFAC) was used to assess the samples' CDOM composition using excitation-emission matrix(EEM) spectroscopy.Four components were identified:three were humic-like(C1,C2 and C3) and one was protein-like(C4).Analysis based on spatial and seasonal distributions,as well as relationships with salinity,Chl a and apparent oxygen utilization(AOU),revealed that terrestrial inputs had the most significant effect on the three humic-like Components C1,C2 and C3 in autumn.In spring,microbial processes and phytoplankton blooms were also important factors that impacted the three components.The protein-like Component C4 had autochthonous and allochthonous origins and likely represented a biologically labile component.CDOM in the southern Changjiang River Estuary was mostly affected by terrestrial inputs.Microbial processes and phytoplankton blooms were also important sources of CDOM,especially in spring.The fluorescence intensities of the four components were significantly higher in spring than in autumn.On average,C1,C2,C3,C4 and the total fluorescence intensity(TFI) in the surface,middle and bottom layers increased by123%–242%,105%–195%,167%–665%,483%–567% and 184%–245% in spring than in autumn,respectively.This finding corresponded with a Chl a concentration that was 16–20 times higher in spring than in autumn and an AOU that was two to four times lower in spring than in autumn.The humification index(HIX) was lower in spring that in autumn,and the fluorescence index(FI) was higher in spring than in autumn.This result indicated that the CDOM was labile and the biological activity was intense in spring.  相似文献   

17.
Dissolved organic matter(DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter(COM; 10 kDa–0.22 μm) retentate, low molecular weight(LMW) DOM(10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM(CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmember(13.4% of the total) than in the seawater endmember(6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components(C1: 250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component(C3: 275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%–8.7%, 4.8%–12.6%, and 7.4%–14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C1+C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component(C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.  相似文献   

18.
An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis(PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluorescence excitation-emission matrix(EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis(BDA). Then the reference fluorescent component ratio matrix was constructed for CHEMTAX, and the EEM–PARAFAC–CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios(CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacillariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.  相似文献   

19.
通过测定有色溶解有机物(CDOM)的吸收光谱和荧光光谱研究了2015年3月和7月长江口盐度梯度下CDOM的分布、组成、来源及河口混合行为等。利用激发发射矩阵荧光光谱(EEMs)并结合平行因子分析(PARAFAC),研究了CDOM的荧光组分特征,共识别出两类4个荧光组分组成,即类腐殖质荧光组分C1(260,375/490 nm)、C2(365/440 nm)、C3(330/400 nm)及类蛋白质荧光组分C4(295/345 nm)。结果表明,3月和7月,4种荧光组分的分布模式与总荧光强度都基本一致:从口内到口外,先升高后降低,且4种组分都在河口呈现不保守混合行为,在最大浑浊带处存在添加过程,达到峰值,在口外有去除过程。3月腐殖化指数HIX范围在1.12~7.19,而7月HIX的范围在0.87~6.71;生物指数BIX在3月范围在0.76~1.11,7月为0.62~1.15,表明3月CDOM的腐殖化程度较7月高,而自生贡献比例较7月略低。3月吸收系数α(355)的平均值为0.55 m-1 ,7月的略高,为0.61 m-1,表明7月长江口CDOM的含量略高。光谱斜率比值SR的季节性变化不大,都是近岸低,远岸高,表明CDOM的平均分子质量从口内到口外在逐渐增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号