共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineralogy and geochemistry of El Dorado epithermal gold deposit, El Sauce district, central-northern Chile 总被引:1,自引:0,他引:1
J. Carrillo-Rosúa S. Morales-Ruano D. Morata A. J. Boyce M. Belmar A. E. Fallick P. Fenoll Hach-Alí 《Mineralogy and Petrology》2008,92(3-4):341-360
Summary The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous
andesites of the Los Elquinos Formation at La Serena (≈ 29°47′S Lat., 70°43′W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E
fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are
pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06−0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As
+ Sb): 0.21−0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs
interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up
to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid
inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.%
NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between −95 and −75‰, respectively. These results suggest
the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed
for the formation of the El Dorado deposit.
Author’s present address: J. Carrillo-Rosúa, Dpto. de Didáctica de las Ciencias Experimentales, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain 相似文献
2.
In the area surrounding the El Teniente giant porphyry copper deposit, eight soil sites were sampled at three depth levels
in the summer 2004. The sites were selected for their theoretical potential of being influenced by past SO2 emissions from the smelter and/or seepage from a now idle tailings impoundment. The soil mineralogy, grain size distribution,
total organic matter contents, major element composition, cation exchange capacity, and Cu, Mo, Pb, Zn, As and SO4
2− concentrations were determined for all samples after nitric acid extraction and separate leaches by ammonium acetate (pH
7) and sodium acetate (pH 5). For water rinses, only Cu could be determined with the analytical set-up used. Cu and SO4
2− enrichment in topsoils was found at six sites either downwind from the smelter or within the combined influence of the smelter
and the tailings impoundment. Both elements were released partially by ammonium and sodium acetate extractions. Due to the
scarce background trace element concentrations of soil and rock outside the immediate mine area, assessment of trace element
mobility for Mo, Zn, Pb and As was difficult. Arsenic was found to be concentrated in soil horizons with high smectite and/or
organic matter contents. Mo appears to be linked to the presence of windblown tailings sediment in the soils. Mobilization
of Mo, Zn, and As for the acetate extractions was minimal or below the detection limits for the AAS technique used. The presence
of windblown tailings is considered to be an additional impact on the soils in the foothills of the El Teniente compound,
together with the potential of acidity surges and Cu mobilization in topsoils after rainfalls. Two sites located at the western
limit of the former SO2 saturated zone with strongly zeolitized soils and underlying rock did not show any Cu or SO4
2− enrichment in the topsoils, and remaining total trace element concentrations were below the known regional background levels. 相似文献
3.
Fluid–rock interaction related to the circulation of hydrothermal fluids can strongly modify the physicochemical properties of wall rocks in porphyry Cu deposits. These processes can also produce compositional and textural changes in ferromagnetic minerals, which can be quantified using magnetic methods. In the Escondida porphyry Cu deposit of northern Chile, each hydrothermally altered lithology is characterized by a discrete assemblage of Fe–Ti oxide minerals. These minerals have distinctive bulk magnetic susceptibility (K bulk), temperature-dependent magnetic susceptibility, and magnetic hysteresis parameters. Selectively altered rocks (i.e., potassic and chloritic alteration types) exhibit the highest K bulk values (>3.93?×?10?3 SI units), and their hysteresis parameters indicate multidomain magnetic mineral behavior. This suggests that these rocks are composed of the coarsest magnetic grain sizes within the deposit. Optical analyses and susceptibility–temperature curves confirm that the magnetic signals in selectively altered rocks are mainly carried by secondary magnetite. In contrast, pervasively altered rocks (i.e., quartz-sericite and argillic alteration types) exhibit low K bulk values (<1.93?×?10?4 SI units) and contain smaller pseudo-single domain magnetic grain assemblages. This is consistent with the destruction and/or reduction in size of magnetite under acidic conditions. The results therefore demonstrate a genetic relationship between the hydrothermal alteration processes, Fe–Ti oxide minerals, and magnetic properties of the wall rock in the Escondida deposit. These magnetic methods can be considered a sensitive and efficient petrophysical tool for the identification and semi-quantification of alteration assemblages, and facilitating the recognition and mapping of discrete hydrothermal zones during exploration and operation of porphyry Cu deposits. 相似文献
4.
The Sanshandao gold deposit (reserves of more than 200 t Au and average grade of 3.96 g/t), located at northwestern edge of the Jiaodong Peninsula, eastern North China Craton, is one of the largest gold deposits in the Jiaodong gold province. In this deposit, disseminated- and stockwork-style ores are hosted in Mesozoic granitoids; mineralization and alteration are largely controlled by the regional Sanshandao–Cangshang fault. Host granitic rocks for the deposit display a complex paragenetic sequence of alteration and mineralization. Activities of the Sanshandao–Cangshang fault created structurally controlled permeability allowing for infiltration of hydrothermal fluids, leading to diffusive K-feldspar alteration on the two fault planes. Later, large scale diffusive sericitization symmetrically developed across the main fault, and partially overprinted the earlier K-feldspar alteration. Following the sericitization, relatively small scale silicification occurred, but now it is only retained in the hanging wall of the main fault. Subsequently, the fault gouge formed as a “barrier layer”, which is impermeable for later fluids to move upward. After that, strong pyrite–sericite–quartz alteration occurred only in the footwall of the main fault, and was accompanied by gold precipitation. The last stage carbonation and quartz-carbonate veins marked the waning of gold-related hydrothermal activity. Mass-balance calculations indicate complex behaviors of different types of elements during fluid–rock interaction. Most major elements were affected by intensive mineral replacement reactions. As expected, the fluid-mobile elements, LILE and LREE, generally show moderate to high mobility. It is notable that even the commonly assumed fluid-immobile elements, such as HREE and HFSE, tend to be changed to various degrees. In addition, Y–Ho, Zr–Hf and Nb–Ta fractionations are observed in altered domains. Studies on alteration assemblages and fluid inclusions suggest that the ore-forming fluids were characterized by low salinity (≤ 8.4 wt.% NaCl equiv.), moderate temperature (300–400 °C), weakly acidic (pH: 3–5), and relatively reducing (log fO2: ~–28) characteristics. In this type of fluids, gold was most likely transported as Au(HS)2− complex. With alteration going on, log (aK+/aH+) of fluids generally decreased due to significant formation of secondary K-bearing minerals. In addition, there might be a decrease of fO2 from pre-gold alteration stage to the main gold mineralization stage, and decrease of fO2 was probably one of the factors controlling gold precipitation. The Sr and Nd isotopic compositions of hydrothermal minerals, combined with previous H–O and He–Ar isotopic studies, indicate that the hydrothermal fluids were mainly derived from crustal sources (e.g., degassing of felsic magmas and meteoric water), but with involvement of mantle derived components. The gold mineralization event just coincided with reactivation of the North China Craton, as marked by asthenosphere upwelling, voluminous igneous rocks, and high crustal heat flow, which may have provided sufficient heat energy and fluid input required for the formation of the gold deposits. 相似文献
5.
智利中部埃尔特尼恩特斑岩型铜钼矿床地质、成矿特征及成因 总被引:1,自引:0,他引:1
智利中部埃尔特尼恩特矿床是世界级超大型铜钼矿床之一,其铜矿石(含铜0.62%)储量达12.4×10~8t,钼矿石(含钼0.018%)储量达7.8×10~8t。矿床位于智利中部安第斯山脉晚中新世—早上新世铜-钼成矿省。该成矿省赋存于晚中新世火山活动带。埃尔特尼恩斑岩型铜-钼矿床赋存于中—晚中新世代伐尔隆斯建造,后者伏于科亚-玛查理建造之下,两者之间呈构造不整合或局部不整合接触关系。矿床产于伐尔隆斯的组成部分晚中新世火山深成杂岩中,该杂岩由厚层的玄武质至流纹质喷出岩及侵入岩组成。矿床围岩为安山岩、长英质-中性侵入岩和布莱登岩筒角砾岩。该矿床流体包裹体组合特征表明,岩浆热液演化及成矿作用经历了4个阶段。流体包裹体成分研究表明,该矿床的形成是富含Cu和可能还富含S的深源流体向不断脱挥发分的巨型次火山岩浆房发生贯入作用的结果。 相似文献
6.
翁孔坝铜多金属矿床是近年来在澜沧江构造带南段的云县-景洪火山弧上新发现的铜多金属矿床,与中三叠世陆相火山岩系密切相关,且具有较大的找矿潜力。文章在野外详细调查的基础上,结合赋矿火山岩岩石学特征,对矿区内火山岩系进行了系统研究,将其细分为5个喷发旋回,9个岩性段(T2s3-1~T2s3-9),认为该矿床具有火山沉积-成岩成矿期和改造成矿期两期成矿作用,为陆相火山沉积-改造型铜多金属矿床。其中,火山岩成矿作用为成矿提供了物质来源,具有明显的岩性/岩相组合控矿特征,笔者综合认为该套火山岩系是矿床主要的控矿因素之一,进而初步建立了其与铜成矿的“时-空-成因”关系图。 相似文献
7.
《International Journal of Coal Geology》2006,65(1-2):158-169
Pyrobitumen has been shown to be an essential component in formation of some Chilean manto-type (strata-bound) copper deposits and its presence has been observed in a number of other deposits but has received limited investigation. In this paper we present paragenetic and geochemical data from two central Chilean manto-type deposits from the Uchumi and Talcuna districts where solid pyrobitumen (residual petroleum) is intimately associated with copper sulfides.Pyrobitumen in the Uchumi deposit occurs in pore space within the host conglomerates and is adjacent to a granitoid stock; pyrobitumen predates bornite–chalcocite mineralization and may have reduced subsequent mineralizing fluids. Pyrobitumen from the Manto Delirio deposit, Talcuna District, fills the cores of early sphalerite veins and was partially replaced by later Cu–As mineralization; pyrobitumen is petrographically intergrown with Cu–Fe sulfides and light δ13C values of gangue calcite indicates the interaction of pyrobitumen with the mineralizing fluid.The presence of pyrobitumen within the ores of other manto-type copper deposits in the Lower Cretaceous basin of Chile suggests that degraded petroleum reservoirs, in particular if biodegradation generated authigenic pyrite, can be important controls for metallic mineralization derived from hydrothermal solutions of different sources. 相似文献
8.
Dania Tristá-Aguilera Fernando Barra Joaquin Ruiz Diego Morata Oscar Talavera-Mendoza Shoji Kojima Fernando Ferraris 《Mineralium Deposita》2006,41(1):99-105
The Lince–Estefanía stratabound copper deposit in the Michilla district is one of the most important deposits in the Coastal Cordillera of northern Chile and is one of the most representative of this type of deposit. Chalcocite and bornite characterize the main stage of hypogene copper sulfide mineralization. Rhenium and osmium isotopes are used here to constrain the age of hypogene mineralization and the source of osmium contained in these ore minerals. A Re–Os isochron yielded an age of 160±16 Ma (2σ), with an associated initial 187Os/188Os ratio of 1.06±0.09 (mean square of weighted deviates=1.8). This age is consistent with available geochronological data from volcanic rocks that host the mineralization and associated alteration phases. The high initial 187Os/188Os ratio indicates a lower crustal component for the source of Os and, by inference, the Cu sulfides that contain this Os. Late hematite occurs as an isolated phase or, more commonly, is associated with the chalcocite–bornite and supergene chalcocite–covellite associations. Analyses performed on pure hematite indicate a disturbance of the Re–Os system, and hence, this mineral phase is not useful as a Re–Os geochronometer. 相似文献
9.
We present a review of major gold mineralization events in China and a summary of metallogenic provinces, deposit types, metallogenic epochs and tectonic settings. Over 200 investigated gold deposits are grouped into 16 Au-metallogenic provinces within five tectonic units such as the Central Asian orogenic belt comprising provinces of Northeast China and Tianshan-Altay; North China Craton comprising the northern margin, Jiaodong, and Xiaoqinling; the Qinling-Qilian-Kunlun orogenic belt consisting of the West Qingling, North Qilian, and East Kunlun; the Tibet and Sanjiang orogenic belts consisting of Lhasa, Garzê-Litang, Ailaoshan, and Daduhe-Jinpingshan; and the South China block comprising Youjiang basin, Jiangnan orogenic belt, Middle and Lower Yangtze River, and SE coast. The gold deposits are classified as orogenic, Jiaodong-, porphyry–skarn, Carlin-like, and epithermal-types, among which the first three types are dominant.The orogenic gold deposits formed in various tectonic settings related to oceanic subduction and subsequent crustal extension in the Qinling-Qilian-Kunlun, Tianshan-Altay, northern margin of North China Craton, and Xiaoqinling, and related to the Eocene–Miocene continental collision in the Tibet and Sanjiang orogenic belts. The tectonic periods such as from slab subduction to block amalgamation, from continental soft to hard collision, from intracontinental compression to shearing or extension, are important for the formation of the orogenic gold deposits. The orogenic gold deposits are the products of metamorphic fluids released during regional metamorphism associated with oceanic subduction or continental collision, or related to magma emplacement and associated hydrothermal activity during lithospheric extension after ocean closure. The Jiaodong-type, clustered around Jiaodong, Xiaoqinling, and the northern margin of the North China Craton, is characterized by the involvement of mantle-derived fluids and a temporal link to the remote subduction of the Pacific oceanic plate concomitant with the episodic destruction of North China Craton. The Carlin-like gold metallogenesis is related to the activity of connate fluid, metamorphic fluid, and meteoric water in different degrees in the Youjiang basin and West Qinling; the former Au province is temporally related to the remote subduction of the Tethyan oceanic plate and the later formed in a syn-collision setting. Porphyry–skarn Au deposits are distributed in the Tianshan-Altay, the Middle and Lower Yangtze River region, and Tibet and Sanjiang orogenic belts in both subduction and continental collision settings. The magma for the porphyry–skarn Au deposits commonly formed by melting of a thickened juvenile crust. The epithermal Au deposits, dominated by the low-sulfidation type, plus a few high-sulfidation ones, were produced during the Carboniferous oceaic plate subduction in Tianshan-Altay, during Early Cretaceous and Quaternary oceanic plate subduction in SEt coast of South China Block, and during the Pliocene continental collision in Tibet. The available data of different isotopic systems, especially fluid D–O isotopes and carbonate C–O systems, reveal that the isotopic compositions are largely overlapping for different genetic types and different for the same genetic type in different Au belts. The isotopic compositions are thus not good indicators of various genetic types of gold deposit, perhaps due to overprinting of post-ore alteration or the complex evolution of the fluids.Although gold metallogeny in China was initiated in Cambrian and lasted until Cenozoic, it is mainly concentrated in four main periods. The first is Carboniferous when the Central Asian orogenic belt formed by welding of micro-continental blocks and arcs in Tianshan-Altay, generating a series of porphyry–epithermal–orogenic deposits. The second period is from Triassic to Early Jurassic when the current tectonic mainframe of China started to take shape. In central and southern China, the North China Craton, South China Block and Simao block were amalgamated after the closure of Paleo-Tethys Ocean in Triassic, forming orogenic and Carlin-like gold deposits. The third period is Early Cretaceous when the subduction of the Pacific oceanic plate to the east and that of Neo-Tethyan oceanic plate to the west were taking place. The subduction in eastern China produced the Jiaodong-type deposits in the North China Craton, the skarn-type deposits in the northern margin (Middle to lower reaches of Yangtze River) and the epithermal-type deposits in the southeastern margin in the South China Block. The subduction in western China produced the Carlin-like gold deposits in the Youjiang basin and orogenic ones in the Garzê-Litang orogenic belt. The Cenozoic is the last major phase, during which southwestern China experienced continental collision, generating orogenic and porphyry–skarn gold deposits in the Tibetan and Sanjiang orogenic belts. Due to the spatial overlap of the second and third periods in a single gold province, the Xiaoqinling, West Qinling, and northern margin of the North China Craton have two or more episodes of gold metallogeny. 相似文献
10.
Mustapha El Ghorfi Thomas Oberthür Frank Melcher Volker Lüders Abdelmajid El Boukhari Lhou Maacha Rachid Ziadi Hssain Baoutoul 《Mineralium Deposita》2006,41(6):549-564
The structurally controlled Au–Pd mineralization at Bleïda Far West occurs in a volcano-sedimentary rock sequence in altered amphibolites and chlorite schists of the Neoproterozoic Bou Azzer–El Graara inlier. The Au–Pd mineralization is virtually sulfide-free; instead, gold is associated with hematite, barite, quartz, and calcite. The gold grains are silver- and palladium-bearing (up to 19 wt% Ag and 6.3 wt% Pd) and are intergrown with a distinct suite of mainly Pd-dominated platinum group minerals, namely mertieite-I/isomertieite, merenskyite, keithconnite, kotulskite, palladseite, and sperrylite, defining a Au–Pd–As–Sb–Se–Te chemical signature. Stable isotope and fluid inclusion studies indicate a wide range of fluid compositions with a prominent saline component. In conjunction with the mineral association, oxidizing fluids are indicated, and Au and PGE transport and deposition likely took place by chloride complexes in the epithermal range, at elevated f O2 and/or low pH. It is still speculative whether the mineralization is late Pan-African (~600–550 Ma) in age, or connected with the Variscan orogeny (~330–300 Ma), or related to some other hydrothermal event. Common to all Au–Pd mineralizations worldwide (Brazil, Australia, UK), including Bleïda Far West, is their formation in the epithermal (<300°C) range; deposition mainly in brittle structures; sulfide-poor mineral assemblages comprising hematite, sulfate minerals, and selenides; and metal transport by, and deposition from, oxidized, chloride-rich fluids. These deposits are further characterized by noble metal abundances in the order Au>Pd>Pt and the chemical signature Au–Pd–Se–Te (±As, Sb, Bi). As such, the Au–Pd association represents a discrete style of gold mineralization distinct from other classes of gold deposits. 相似文献
11.
O. A. Limantseva A. A. Makhnach B. N. Ryzhenko E. V. Cherkasova 《Geochemistry International》2008,46(1):62-76
Systems of silty sand-water and clayey rock-water were simulated under open-system conditions with respect to CO2 and oxygen at 25°C. It was shown that the dawsonite(+ quartz)+kaolinite assemblage at the Zaozernyi deposit was formed by interaction of terrigenous sediments with chloride-sodium solutions containing NaCl >100 g/kg H2O and saturated in carbonic acid (a partial pressure of CO2 > 0.5 bar). The modeling results do not confirm the possibility of dawsonite formation after primary bauxites (products of kaolinite weathering crusts), which is presumably related to the inconsistent formation parameters of these minerals during weathering of aluminosilciate rocks. 相似文献
12.
云南羊拉铜矿床位于金沙江构造带中部,是中-晚三叠世金沙江洋盆向西俯冲闭合碰撞造山过程中形成的一个大型铜矿床。矿体多呈层状、似层状顺层产出,但明显受层间破碎带和滑脱带控制。从流体包裹体研究入手,讨论了该矿床成矿流体的特征、演化以及流体不混溶(沸腾)作用与成矿的关系。流体包裹体研究表明,干夕卡岩阶段(Ⅰ)、湿夕卡岩磁铁矿阶段(Ⅱ)、石英硫化物阶段(Ⅲ)以及方解石硫化物阶段(Ⅳ)中发育多种类型的包裹体,主要为气液水两相包裹体和含子矿物多相包裹体,纯液相水包裹体次之,少见纯气相有机质包裹体。其中,含子矿物多相包裹体发育于Ⅰ阶段石榴石、Ⅱ阶段绿帘石,尤其是Ⅲ阶段石英中。Ⅰ、Ⅱ阶段成矿流体具有高温、高盐度特征,均一温度分别为413~593 ℃和336~498 ℃,盐度分别为19.1%~49.7% NaCleq和15.7%~53.3% NaCleq;Ⅲ阶段成矿流体均一温度为148~398 ℃,并具有低盐度(2.1%~9.6% NaCleq)与高盐度(35.5%~65.3% NaCleq)共存的特征;Ⅳ阶段成矿流体具有低温(132~179 ℃)、低盐度(3.4%~10.4% NaCleq)特征。根据流体包裹体的微观特征并结合矿区的宏观地质特征,认为流体不混溶(沸腾)是导致本矿区金属沉淀成矿的主要机制。 相似文献
13.
MARCIA铜矿位于智利海岸山脉成矿带,通过对矿区地层、地质特征、矿体特征与构造的关系等分析,对该矿区铜矿的形成机理进行了初步探讨,认为该矿区铜矿的形成与断裂关系密切,F2断裂是导矿和容矿断裂,该区找矿前景巨大. 相似文献
14.
艾斯康迪达矿床是位于智利北部安第斯铜矿带的世界第三大斑岩型铜矿床,铜储量3156.7×104t,其形成主要与始新世晚期—渐新世的石英二长岩-花岗闪长斑岩岩株有关,构造上受多梅科断层系统的控制。该矿床拥有典型斑岩型铜钼矿床的热液蚀变类型,包括钾长石化、黑云母化、石英-绿泥石-绢云母化、泥化与青磐岩化。与成矿有关的侵入岩年龄在38Ma左右,辉钼矿Re-Os年龄为36.1~33.7Ma。流体包裹体特征表明,该区域矿床成矿热液分为早期高温的岩浆热液和晚期岩浆热液与地下水混合的低温低盐度热液2期。高场强元素的负异常、稀土元素La/Yb值特征与Sr-Nd同位素比值特征表明,成矿斑岩是混入少量壳源物质的幔源岩浆演化来的。形成于南北向多梅科断层与北西向线性构造交会位置的转换拉伸环境,对艾斯康迪达矿床成矿斑岩的侵位具有关键性作用。 相似文献
15.
艾斯康迪达矿床是位于智利北部安第斯铜矿带的世界第三大斑岩型铜矿床,铜储量3156.7×104t,其形成主要与始新世晚期—渐新世的石英二长岩-花岗闪长斑岩岩株有关,构造上受多梅科断层系统的控制。该矿床拥有典型斑岩型铜钼矿床的热液蚀变类型,包括钾长石化、黑云母化、石英-绿泥石-绢云母化、泥化与青磐岩化。与成矿有关的侵入岩年龄在38Ma左右,辉钼矿Re-Os年龄为36.1~33.7Ma。流体包裹体特征表明,该区域矿床成矿热液分为早期高温的岩浆热液和晚期岩浆热液与地下水混合的低温低盐度热液2期。高场强元素的负异常、稀土元素La/Yb值特征与Sr-Nd同位素比值特征表明,成矿斑岩是混入少量壳源物质的幔源岩浆演化来的。形成于南北向多梅科断层与北西向线性构造交会位置的转换拉伸环境,对艾斯康迪达矿床成矿斑岩的侵位具有关键性作用。 相似文献
16.
The Tongshan skarn-type copper deposit is located in the Anqing–Guichi ore cluster of the iron–copper metallogenic belt which occurs along the Middle–Lower Yangtze River Valley, China. In the study area, skarnization and mineralization took place along the contact zone between carbonates and granodiorite porphyries. The contact zone shows significant horizontal and vertical variations in alteration and mineralization. In the horizontal direction, the garnet content is high in the skarns near the intrusive body (proximal skarns), the diopside content is high farther from the intrusive body (distal skarns), and hedenbergite is concentrated in the skarns adjacent to the marble zone. Limestones located far from the marble zone experienced a strong silicification. In the vertical direction (from higher to lower levels), the rocks change from hornfels to calcareous skarn to magnesian skarn. Mineralogical studies show that the skarns near the intrusion are relatively oxidized, and the garnet in the skarns is relatively andradite rich. High concentrations of Cu are found in the porphyries with quartz veins, as well as in the calcic skarns, magnesian skarns, hornfelses, and marbles, which are located at distances of 13, 10, 43 and 25 m from the porphyries, respectively. High concentrations of Zn are found in silicified limestones and skarns located even farther from the porphyries. The present findings suggest that the Tongshan deposit was subjected to prograde alteration and mineralization, followed by retrogression. The alteration can be divided into a sequence of stages: contact metamorphism, prograde metasomatism, early retrogression, and late retrogression. The copper mineralization occurred mainly during the early retrogression, and the copper was further enriched in quartz veins within the porphyries during the late stages of magma evolution. 相似文献
17.
春都斑岩铜矿床地处著名的印支期中甸-义敦岛弧成矿带南端。矿区出露闪长玢岩-花岗闪长斑岩复式岩体,成矿岩体为印支晚期的花岗闪长斑岩。围绕成矿岩体,围岩蚀变强烈,蚀变分带明显,由中心向外,依次出现硅化钾化带→绢英岩化带→硅化带→硅化黑云母化带→青磐岩化带→绢云母化及泥化带。区内蚀变与矿化关系密切,蚀变类型决定矿化程度,蚀变... 相似文献
18.
铜矿峪铜矿床是中条山成矿带的一个大型铜矿床。笔者通过详细的野外观察和系统的岩相学、矿相学工作,对铜矿峪铜矿床的地质、蚀变与矿化进行了详细研究,厘定了主要的围岩蚀变类型及分带特征,并初步探讨了矿化蚀变与成矿作用的关系。研究表明,该矿床早期蚀变为钠硅酸盐化、钾硅酸盐化和青磐岩化,晚期蚀变为长石分解蚀变。空间上,钠硅酸盐化位于岩体内部,钾硅酸盐化位于岩体及其周围地区,青磐岩化位于钾硅酸岩化外侧;钾硅酸盐化叠加于早期的钠硅酸盐化上,后期形成的长石分解蚀变强烈叠加于早期钾硅酸盐化上,位于钾硅酸盐化与青磐岩化之间。铜矿峪斑岩型铜矿床铜矿化应始于钾硅酸盐阶段的晚期,石英硫化物阶段是该矿床最主要的铜矿化阶段,石英碳酸盐阶段次之;另外,碳酸盐阶段也贡献了部分铜。铜矿峪矿体在赋存位置方面与玉龙、德兴、Malanjkhand矿床相似;脉体类型与沙溪、德兴矿床相似;蚀变类型与Tallberg、沙溪矿床基本一致;与Malanjkhand矿床一样都发育特征的钠长石化。 相似文献
19.
察尔其铜矿位于新疆拜城县,是区域滴水铜矿带的东段。铜矿体产于新生界中新统-上新统康村组第四段(N_(1-2)k~4)的第3亚段和第5亚段;铜矿化主要产于杂色砂岩及其与泥灰岩接触部位附近。矿区含矿层主要有B矿层和C矿层,B矿层划分出3条铜矿体,其中B1、B2号矿体为主矿体;C矿层矿体划分出5个矿体,其中C1号矿体为主矿体,也是察尔其铜矿区的主矿体。矿区新近系康村组含矿层沉积特征为扇三角洲前缘亚相的水下分流河道微相和分流间湾微相,滨浅湖亚相的浅湖砂坝微相和浅湖泥微相,局部出现深湖相。康村组沉积物来自再旋回造山带物源区,含矿砂岩的碎屑来自灰岩、泥灰岩、砂岩、泥岩、变质岩、深成岩、火山岩等,与北邻天山造山带的岩性相当。认为察尔其铜矿床属于与新近纪湖相沉积作用有关的砂岩型铜矿,并将铜矿形成过程分为2个成矿期3个成矿阶段,建立了矿床成矿模式。 相似文献
20.
安徽庐枞沙溪斑岩铜矿蚀变及矿化特征研究 总被引:4,自引:9,他引:4
沙溪斑岩铜矿是长江中下游成矿带中部庐枞火山岩盆地外围的一个大型铜矿床.本文在前人工作基础上,基于详细的野外观察和系统的岩相学、矿相学工作,详细研究了矿床的蚀变特征及分带.结果表明,矿床的蚀变类型有钾硅酸盐化、青磐岩化、长石分解蚀变和高岭土化,从深到浅依次发育有钾硅酸盐化、长石分解蚀变叠加钾硅酸盐化、长石分解蚀变和高岭土化等蚀变.确定了矿化特征、矿物生成顺序并划分了成矿阶段,即:钾硅酸盐阶段、石英硫化物阶段和石英碳酸盐阶段,其中,石英硫化物阶段又可进一步分为石英硫化物亚阶段和绿帘石-绿泥石亚阶段.基于蚀变及矿化特征认为,沙溪铜矿床的矿化始于钾硅酸盐阶段的晚期,石英硫化物亚阶段是黄铜矿主要的沉淀阶段,石英碳酸盐阶段也对成矿贡献了部分铜质.与世界上不同构造环境的典型斑岩铜矿床对比认为,沙溪矿床总体上与这些矿床的蚀变、矿化特征类似;与陆缘弧、岛弧、陆内碰撞造山后伸展环境矿床在矿体产出位置、蚀变分带方面相似;而由于围岩性质的差异,与板内环境的德兴矿床在矿体位置、蚀变分带方面存在差异,但是二者在脉体类型特别是与矿化关系密切的脉体特征上较为一致.因此,对于斑岩型矿床而言,构造背景可能控制了其岩浆的形成、演化以及含矿性,而岩浆岩最终定位的深度、围岩等条件则控制了其蚀变、矿化特征. 相似文献