首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Energy balance components over a grassland surface were compared to those obtained above an adjacent, uniform Scots pine plantation during a five-day period of fine, sunny, spring weather. Soils were judged to contain ample water. Shortwave and total radiation flux densities were measured at both sites with pyranometers and total pyrradiometers. Soil heat flux densities were measured with heat flux plates at both sites, and additional storage changes were estimated for air and canopy at the forest site. The forest gained more shortwave energy than the grassland during daytime because of its lower albedo, but it lost more longwave radiation at night. The turbulent fluxes of sensible and latent energy were evaluated with the Bowen ratio energy balance (BREB) method at both sites. Temperature and humidity gradients were measured with fixed psychrometers at the grassland site, and with interchanging psychrometers at the forest site. Mean daily evapotranspiration (ET) averaged 2.26 mm over the five days for the Scots pine, or only 57 percent of the 3.94 mm measured at the grassland site. The mean Bowen ratios were 2.6 and 0.8, respectively.An error analysis was carried out for the BREB estimates of latent heat flux at the two sites. For a given error in latent heat flux and at a specified Bowen ratio the demands on accuracy of dry- and wet-bulb temperature gradients above the rough forest canopy was found to be 10 times higher than above the smoother grassland. If additionally the observed differences in transpiration rates between the two sites were taken into account, the precision for temperature gradient measurements above the slowly transpiring forest becomes fortyfold greater than required above the rapidly transpiring grass. At present, BREB precision requirements for gradients above rougher, drier canopies appear achievable only through use of specialized instrumentation, such as measurement systems that incorporate interchangeable psychrometers into their design.With 9 Figures  相似文献   

2.
3.
Summary The available aerological material now permits a more accurate estimate than before of the various terms in the heat budget. It is difficult to find an area for which all energy budget terms have been evaluated. The research at McGill University has attempted to fill this need for the Polar Ocean. In such discussions the heat fluxes at two levels must be known: in the present investigation, 300 mb and earth's surface were chosen. The heat budget calculations were carried out for several areas of the Polar Ocean. Independent calculations of all terms having been made, it was possible to check the accuracy. Both for the Polar Ocean and the Norwegian-Barents Sea a satisfactory balance was obtained.The surface energy budget shows that the radiative terms are far greater than all other influences, and the long-wave components are the greatest in all areas and months. The sensible heat flux from atmosphere to ground is negligible. In winter, all energy expenditure is radiative from the Polar Ocean, but 20% is non-radiative over the Norwegian-Barents Sea. There, the readily available energy from the ocean compensates for the progressively smaller input by radiation through the winter, and the energy budget remains extraordinarily stable during the winter. Looking at the tropospheric energy budget over the Arctic, there is a sharp increase in importance of non-radiative terms on the income side, and an even more pronounced decrease on the expenditure side.Calculations for the earth-atmosphere energy budget show that the result of no advection into the North Polar regions would be a temperature drop of 35° C over the Norwegian-Barents Sea and about 50° over the Central Polar Ocean. The various energy currents are represented pictorially, setting the total incoming energy at the top of the atmosphere equal to 100 units. All discussions refer to the average conditions over the Arctic Ocean. It would be most valuable to know which changes in the individual terms are possible and can be realised under the existing conditions of the world in which we live. The data available from the present investigation will be used for such a study of climatic change.
Zusammenfassung Das verfügbare aerologische Beobachtungsmaterial gestattet heute eine genauere Schätzung der verschiedenen Terme des Wärmehaushalts als früher. Doch ist es schwierig, ein Gebiet zu finden, für das sämtliche Glieder des Energiebudgets bestimmt wurden. Die Untersuchungen der McGill-Universität versuchen, diese Lücke für das Polarmeer auszufüllen. Für solche Untersuchungen müssen die Wärmeströme in zwei verschiedenen Niveaus bekannt sein, und für die vorliegende Untersuchung wurden das 300-mb-Niveau und die Erdoberfläche gewählt. Die Berechnungen des Wärmehaushalts wurden für verschiedene Gebiete des Nördlichen Eismeers durchgeführt. Da unabhängige Berechnungen der einzelnen Glieder durchgeführt wurden, ist es möglich, die Genauigkeit abzuschätzen, und es zeigt sich, daß sowohl für das Eismeer wie für die Norwegen-Barents-See eine befriedigende Bilanz resultiert.Aus der Energiebilanz am Boden ergibt sich, daß die Strahlungsglieder bei weitem größer sind als alle übrigen Einflüsse und daß die langwelligen Komponenten in allen Gebieten und Monaten am größten sind. Der fühlbare Wärmestrom von der Atmosphäre zur Erde kann vernachlässigt werden. Im Winter beruht der gesamte Energieverlust vom Eismeer auf Strahlungsvorgängen, über der Norwegen-Barents-See dagegen nur zu 80%. Hier kompensiert die leichte Wärmeabgabe vom Ozean die progressive Abnahme des Strahlungsgenusses durch den Winter, so daß die Energiebilanz während des Winters außerordentlich gleichmäßig bleibt. Hinsichtlich der Energiebilanz der Troposphäre über der Arktis besteht ein starker Energiegewinn durch die strahlungsfreien Glieder und gleichzeitig eine ausgesprochene Abnahme der Wärmeverluste.Berechnungen des Wärmehaushalts zwischen Erde und Atmosphäre zeigen, daß das Fehlen von Advektion zum Nordpolargebiet zu einem Temperaturabfall von 35° C über der Norwegen-Barents-See und von 50° über dem zentralen Eismeer führen müßte. Die verschiedenen Energieströmungen werden bildlich dargestellt, wobei die gesamte am äußeren Rande der Atmosphäre eintretende Energie 100 Einheiten gleichgesetzt wird. Alle Diskussionen beziehen sich auf durchschnittliche Verhältnisse über dem Eismeer. Es wäre von großem Interesse zu untersuchen, welche Veränderungen der einzelnen Glieder unter den auf der Erde herrschenden Bedingungen möglich und realisierbar sind. Die Resultate der vorliegenden Untersuchung werden für eine derartige Studie über Klimaveränderungen benützt werden.

Résumé Les observations aérologiques disponibles actuellement permettent une estimation plus précise que jusqu'ici des différents paramètres de calcul du bilan thermique. Il est cependant difficile de trouver une surface d'une certaine dimension pour laquelle tous les termes du bilan énergétique ont été évalués. Les recherches entreprises à l'Université McGill tentent de combler cette lacune pour l'Océan Glacial Arctique. Pour ce faire, il faut connaître les flux de chaleur à deux niveaux; dans la présente étude, on a choisi la surface standard de 300 mb et le sol. Les calculs du bilan thermique ont été effectués pour plusieurs parties de l'Océan Glacial Arctique. Vu que chaque terme de l'équation fut calculé indépendemment des autres, il fut possible d'en contrôler la précision. On a ainsi obtenu un bilan satisfaisant tant pour l'Océan Glacial tout entier que pour la partie située entre les Mers de Norvège et de Barentz.Le bilan énergétique à la surface du sol montre que les paramètres de radiation sont beaucoup plus importants que tous les autres et que leurs composantes se rapportant aux longues ondes sont les plus grandes dans toutes les régions étudiées ainsi qu'au cours de tous les mois de l'année. Le flux de chaleur perceptible de l'atmosphère vers le sol est négligeable. En hiver, toute la dépense d'énergie provient du rayonnement sur l'Océan Glacial Arctique, mais, sur les Mers de Norvège et de Barentz, 20% de ces pertes d'énergie ne proviennent pas du rayonnement. Dans ce second cas, l'énergie venant de la mer et immédiatement disponible compense durant tout l'hiver la diminution progressive du rayonnement reçu, si bien que le bilan énergétique y est extraordinairement stable durant toute cette saison. Quant au bilan énergétique de la troposphère au-dessus de l'Arctique, on constate une forte augmentation de l'importance des termes étrangers au rayonnement du côté des gains en énergie et une décroissante tout aussi importante de ceux-ci du côté des pertes.Des calculs concernant l'échange énergétique entre l'atmosphère et la terre montrent que le résultat de l'absence d'advection vers les régions polaires arctiques serait une chute de température de 35° C sur les Mers de Norvège et de Barentz et de près de 50° C sur le centre de l'Océan Glacial Arctique. Les différents courants d'énergie ainsi calculés sont reportés sur des figures en pour-cent de l'énergie totale reçue au sommet de l'atmosphère. Toutes les dicussions se rapportent à des conditions moyennes régnant sur l'Océan Glacial Arctique dans son ensemble. Il serait cependant très intéressant de connaître quelles sont, pour les différents termes du bilan thermique, les variations possibles et pouvant se réaliser dans les conditions existant dans le monde où nous vivons. Les chiffres résultants de la présente recherche seront utilisés dans une étude consacrée aux modification du climat.


With 5 Figures

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(604)-7415.  相似文献   

4.
Summary Evaporation and sensible heat flux have been calculated for each month over the Polar Ocean and the Norwegian-Barents Sea. Sverdrup's evaporation formula was used, and it was first examined how the K-coefficient in that formula depends on the wind speed frequency distribution. Thus the effect of the Arctic wind conditions could be taken into account. Seasonal maps were constructed of mean wind speed. Previously obtained surface temperatures were used, but some additional examinations were carried out, using various assumptions for extreme surface temperatures in summer and winter.Evaporation and sensible heat flux were calculated separately for the following areas: Central Polar Ocean, Kara-Laptev Sea, East Siberian Sea, Beaufort Sea, and belts of 5° latitude of the Norwegian-Barents Sea.The values for the different areas are presented in tables and figures. Evaporation over ice surfaces has a double maximum—in spring and fall—and a main minimum in winter. Over open water surfaces the evaporation shows a summer minimum and a broad maximum in winter. If small parts of the ocean were to remain open longer in the fall, or during the whole winter, the heat loss would increase very rapidly.Sensible heat flux is often calculated from evaporation by theBowen ratio. The small evaporation values over the Polar Ocean give unreliable values for sensible heat flux, and instead the formula byShuleikin was used. This permits the determination of sensible heat flux independent of evaporation. The characteristic sensible heat flux curves are quite similar to the evaporation curves. The open water areas in the Polar Ocean show very high values for sensible heat flux. One percent open water, from October to May would increase the heat flux from the Central Polar Ocean from 3.7 to 5.2 Kcal cm–2, year–1. Open areas must remain small as there is not sufficient energy available to maintain such fluxes.Finally, a table gives the monthly values of the total heat loss for the various areas, by evaporation and sensible heat flux.
Zusammenfassung Monatswerte für Verdunstung und Wärmefluß wurden für das Polarmeer und für Nordmeer-Barentssee berechnet. Zur Verdungstungsberechnung wurde die Formel vonSverdrup benutzt, deren K-Koeffizient in seiner Windabhängigkeit neu berechnet wurde. Auf Grund neu konstruierter jahreszeitlicher Karten der mittleren Windgeschwindigkeit konnten die arktischen Windverhältnisse berücksichtigt werden. Wegen der Unsicherheit früher bestimmter Oberflächentemperaturen wurden zusätzliche Berechnungen für Extremfälle im Sommer und Winter durchgeführt, um mögliche Fehlerquellen abzuschätzen. Verdunstung sowie Wärmefluß wurden gesondert für die folgenden Gebiete berechnet: Zentrales Polarmeer, Kara-Laptev-See, Beaufort-See sowie für Bänder von 5° Breite im Gebiet Nordmeer-Barentssee.Die Resultate für die einzelnen Gebiete werden an Hand von Diagrammen und Tabellen diskutiert. Über Eis zeigt die Verdunstung ein doppeltes Maximum im Frühling und Herbst und das Hauptminimum im Winter, während sich über offenem Wasser ein Sommerminimum und ein breites Wintermaximum ergeben. Es zeigt sich, daß bereits relativ kleine Wasserflächen, die länger im Herbst oder während des ganzen Winters offen bleiben, im Polarmeer zu sehr hohen Wärmeverlusten führen.Der Wärmefluß wird oft auf Grund der Verdunstung mit Hilfe derBowen-Formel berechnet. Wegen der geringen Verdunstung über dem Polarmeer führt diese Formel jedoch zu unrichtigen Werten, und es wird deshalb hier dieShuleikin-Formel benützt, die eine Bestimmung des Wärmeflusses unabhängig von der Verdunstung ermöglicht; die charakteristischen Kurven des Wärmeflusses sind den Verdunstungskurven sehr ähnlich. Offenes Wasser im Polarmeer führt auch hier zu sehr hohen Werten; eine offene Wasserfläche von 1% in der Zeit von Oktober bis Mai würde den Wärmefluß vom zentralen Polarmeer von 3,7 auf 5,2 Kcal/cm2 pro Jahr erhöhen. Offene Flächen müssen daher klein bleiben, da der Energievorrat nicht genügend groß für die Aufrechterhaltung eines solchen Energieflusses wäre. Zum Schlusse werden in einer Tabelle Monatswerte der gesamten Wärmeverluste durch Verdunstung und Wärmefluß für die verschiedenen Gebiete gegeben.

Résumé On a calculé des valeurs mensuelles de l'évaporation et du flux de chaleur pour l'Océan Glacial Arctique et pour la région située entre la Mer du Groenland et la Mer de Barents. Dans le cas de l'évaporation, on s'est servi de la formule deSverdrup dont on a déterminé à nouveau le coefficient K en tenant compte de sa dépendance du vent. Il a été possible de tenir compte du vent dans les régions arctiques grâce à l'établissement récent de cartes saisonnières de la vitesse moyenne du vent. En raison de l'incertitude des déterminations antérieures de la température de surface, on a procédé à des calculs supplémentaires pour des cas extrêmes en été et en hiver afin d'évaluer les sources d'erreurs possibles. On a calculé séparément l'évaporation et le flux de chaleur pour les régions suivantes: Centre de l'Océan Glacial Arctique, Mer de Kara-Mer de Laptev, Mer de Beaufort ainsi que pour de bandes de 5° de largeur dans la région comprise entre la Mer du Groenland et la Mer de Barents.On discute les résultats obtenus pour ces différentes zones en partant de diagrammes et de tableaux. Au-dessus de la glace, l'évaporation présente deux maximums, l'un au printemps, l'autre en automme et un minimum principal en hiver. Sur la mer libre, on constate au contraire un minimum en été et un maximum très large en hiver. Il en résulte que des surfaces libres de glace relativement peu étendues qui se maintiennent en automne, voire durant tout l'hiver peuvent déjà provoquer des pertes de chaleur considérables dans l'Océan Glacial Arctique.On calcule souvent le flux de chaleur en se basant sur l'évaporation selon la formule deBowen. Cependant, en raison des faibles évaporations constatées sur l'Océan Glacial, cette formule conduirait à des valeurs fausses. On a donc utilisé ici la formule deShuleikin qui permet la détermination du flux de chaleur indépendamment de l'évaporation. Les courbes caractéristiques du flux de chaleur sont très semblables à celles de l'évaporation. Les surfaces libres de glace de l'Océan Glacial conduisent ici aussi à des valeurs très élevées. Une surface d'eau de 1% restant libre de glace d'octobre à mai augmenterait de flux de chaleur de l'océan de 3,7 à 5,2 Kcal/cm2 par année. Les surfaces d'eau doivent donc rester très petites, car les réserves d'énergie sont insuffisantes pour maintenir un tel flux d'énergie calorifique. On donne enfin dans une table les pertes mensuelles totales de chaleur dues à l'évaporation et au flux de chaleur et cela pour chacune des régions considérées.


With 6 Figures

The research reported in this paper was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(604)7415.  相似文献   

5.
6.
The energy balance was measured for the dry canopy of narrow-leaved snow tussock (Chionochloa rigida), and measurements of transpiration were obtained from a large weighing lysimeter.Typical maximum summer transpiration rates of 0.21–0.43 mmhr-1 (140–290 W m-2) were recorded. The latent heat flux accounted for less than 40% of net radiation. The estimated value of the bulk stomatal resistance (r ST) for 29 days was 158 s m-1, and the decoupling parameter () was 0.17. Transpiration rates were not driven directly by net radiation, but were closely linked to the size of the regional saturation deficit imposed at the level of the canopy by efficient overhead mixing, and were constrained by a large bulk stomatal resistance. A linear relationship between r ST and the saturation deficit is proposed as a realistic method for estimating transpiration for water yield studies of tussock catchments.  相似文献   

7.
Energy balance closure for the LITFASS-2003 experiment   总被引:1,自引:1,他引:1  
In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft).  相似文献   

8.
9.
10.
An overview of the Energy Balance Experiment (EBEX-2000) is given. This experiment studied the ability of state-of-the-art measurements to close the surface energy balance over a surface (a vegetative canopy with large evapotranspiration) where closure has been difficult to obtain. A flood-irrigated cotton field over uniform terrain was used, though aerial imagery and direct flux measurements showed that the surface still was inhomogeneous. All major terms of the surface energy balance were measured at nine sites to characterize the spatial variability across the field. Included in these observations was an estimate of heat storage in the plant canopy. The resultant imbalance still was 10%, which exceeds the estimated measurement error. We speculate that horizontal advection in the layer between the canopy top and our flux measurement height may cause this imbalance, though our estimates of this term using our measurements resulted in values less than what would be required to balance the budget. The National Center for Atmospheric Research is supported by the National Science Foundation  相似文献   

11.
12.
Summary  The predicted global warming is supposed to have an enhanced effect on the arctic regions. How this will influence the water, carbon dioxide and methane balances in the European arctic tundra is the objective of the EU-funded project “Understanding Land Surface Physical Processes in the Arctic” (LAPP), to which where SINTEF is one of several contributors. The snow cover is one of the limiting factors for these exchange processes and knowledge of how it behaves and will behave under a different climate is important. Data collected for water and energy balance studies in an area close to Ny-?lesund at 79°N at Svalbard are the basis of this study. Measurements during the ablation periods since 1992 show an average air temperature for the periods of 2.1 °C, an average incoming shorwave radiation of 230 W/m2 and an average measured runoff intensity of 14 mm/day with a maximum of 68 mm/day. Three models of different complexity are tested in order to simulate the water and energy balance of a snow cover on the arctic tundra. The three models are: a complex numerical model (CROCUS), a simple energy balance model and a temperature index model. The simulations were carried out for the melt periods in 1992 and 1996 as these two periods represent very different meteorological conditions. The results of these simulations exposed weaknesses in all the models. The energy balance model lacks calculation of cold content in the snowpack. This influences both the outgoing longwave radiation and the timing of the melt. Due to the effect of compensating errors in the simulations, CROCUS performed better than the simple energy balance model but also this model has problems with the simulation of outgoing longwave radiation. The temperature index model does not perform well for snowmelt studies in regions were radiation is the main driving energy source for the melt. Received September 28, 1999 Revised September 18, 2000  相似文献   

13.
14.
15.
The parameterization of the energy balance from a residential and commercial neighborhood of Mexico City was investigated using direct measurements of radiative and heat fluxes carried out during the MILAGRO/MCMA-2006 field campaign as a reference. The measured fluxes were used to evaluate different models of the energy balance based on parameterizations that require standard meteorological observations: ambient temperature, relative humidity, atmospheric pressure and cloudiness. It was found that these models reproduce with reasonable accuracy the diurnal features of the radiative and heat fluxes. The largest differences between modeled and observed fluxes correspond to the incoming longwave radiation, mainly due to errors in the cloudiness data. This paper contributes to the understanding of the energy partitioning in (sub)tropical urban environments, particularly in the developing world, where energy balance models have not been evaluated.  相似文献   

16.
Summary In a previous paper [1] the sensitivity of radiation balance meters with a polyethylene dome was discussed. In these discussions it appeared that the absorption properties of the thermopile and the transmission of the polyethylene play an important role in sensitivity.A number of polyethylene domes has been measured on their transmission power before as well as after use, to get information on the effect of use. The absorption factor for longwave thermal radiation of Parsons optical matt black has been calculated by comparing net radiation data from the Funk net radiometer and calculated data from separate measurements of incoming and outgoing radiation by the Schulze balance radiometer.
Zusammenfassung In einer früheren Mitteilung [1] wurde die Empfindlichkeit von Strahlungsbilanzmessern mit Lupolenhalbkugel diskutiert; dabei ergab sich, daß bei der Empfindlichkeit die Absorptionseigenschaften der Thermosäule und die Durchlässigkeit des Lupolens eine bedeutende Rolle spielen.Um den Einfluß der Benützung abzuklären, wurde bei einer Anzahl Lupolenhalbkugeln die Durchlässigkeit vor und nach erfolgter Exposition gemessen. Das Absorptionsvermögen von Parsons mattem Schwarzlack für langwellige Wärmestrahlung wurde berechnet durch eine Vergleichung von Nettostrahlungswerten nach dem Funk-Strahlungsmesser und von berechneten Werten separater Messungen der einfallenden und der ausgehenden Strahlung mit einem Schulze-Strahlungsbilanzmesser.

Résumé Dans un précédent mémoire [1], on a discuté la sensibilité des appareils de mesure du bilan radiatif recouverts de coupoles de polyéthylène. Il en découlait que la dite sensibilité dépend avant tout des propriétés d'absorption de la pile thermo-électrique et du pouvoir de transmission de l'enveloppe de polyéthylène.Afin de déterminer les effets découlant de leur utilisation, on a mesuré la perméabilité au rayonnement d'un certain nombre de coupoles de polyéthylène avant et après leur exposition. On a calculé le pouvoir d'absorption en rayonnement calorifique de grande longueur d'ondes de la laque noire et mate de Parsons en comparant les relevés de rayonnement net d'un radiomètre de Funk aux valeurs calculées de mesures séparées du rayonnement reçu et émis mesures faites au moyen d'un bilanmètre de rayonnement de Schulze.

With 1 Figure  相似文献   

17.
The energy storage terms for a mature mixed forest at Petawawa, Ontario are reported for 38 days in the summer of 1982 when the forest was in full leaf. Hourly, daily and daytime values of the storage terms are documented. The biomass storage term, Q v , should be calculated from measurement of biomass temperature change. For hourly periods, the storage terms can be of significant size with respect to net radiation, Q *. This is especially the case at night, in the early morning after sunrise, and near sunset. The importance of the storage terms is still pronounced when daytime totals are considered — the ratio of the total storage (Q s ) to Q * varied from 1 to 15% for the whole sample, but is typically between 5 and 10%. For daily totals when the canopy is dry and the net radiation high, Q s is typically 2 to 3 % of Q *. However, it can be up to 10% of Q * under particular conditions (overcast days, or during or immediately following rainfall).  相似文献   

18.
The 1990 and 1991 ablation seasons over Greenland are simulated with a coupled atmosphere-snow regional climate model with a 25-km horizontal resolution. The simulated snow water content allows a direct comparison with the satellite-derived melt signal. The model is forced with 6-hourly ERA-40 reanalysis at its boundaries. An evaluation of the simulated precipitation and a comparison of the modelled melt zone and the surface albedo with remote sensing observations are presented. Both the distribution and quantity of the simulated precipitation agree with observations from coastal weather stations, estimates from other models and the ERA-40 reanalysis. There are overestimations along the steep eastern coast, which are most likely due to the “topographic barrier effect”. The simulated extent and time evolution of the wet snow zone compare generally well with satellite-derived data, except during rainfall events on the ice sheet and because of a bias in the passive microwave retrieved melt signal. Although satellite-based surface albedo retrieval is only valid in the case of clear sky, the interpolation and the correction of these data enable us to validate the simulated albedo on the scale of the whole Greenland. These two comparisons highlight a large sensitivity of the remote sensing observations to weather conditions. Our high-resolution climate model was used to improve the retrieval algorithms by taking more fully into account the atmosphere variability. Finally, the good agreement of the simulated melting surface with the improved satellite signal allows a detailed estimation of the melting volume from the simulation.  相似文献   

19.
Summary This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration (ET) and net CO2 flux (NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns ofNCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similarNCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes include the highly artificial air turbulence in the canopy chamber and possible associated stomatal response. More work is necessary to identify conclusively the causes. In spite of these uncertainties, the BREB+ technique appears well suited for the automated and simultaneous tracking of photosynthetic performance and water economy of crops in their virtually undisturbed natural environment.To whom reprint requests should be sent.With 7 Figures  相似文献   

20.
Based on calculations of data from FGGE Level III b, a discussion is made of the energy balance in the 40-50 day periodic oscillation over the Asian monsoon region during the 1979 summer. It is found that the main source of 40-50 day periodic perturbation is the monsoon region extending from central South Asia to Southeast Asia. In the upper layer over the North Pacific subtropical area (10-20oN, 150oE-150oW) pres-sure work turns into kinetic energy that maintains 40-50 day periodic perturbation associated with the variation in position and intensity of the mid-Pacific trough. The mean energy budget in the three-dimensional space (0-30oE, 30oE-150oW, 100-1000 hPa) indicates that the 40-50 day periodic perturbation transports kinetic energy to a seasonal mean and a transient perturbation wind field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号