共查询到20条相似文献,搜索用时 0 毫秒
1.
Under the organization of China Geological Survey, relevant departments have made industry specifications and technical requirements based on hydrogeological survey data collection at the scale of 1:50 000. Among them, groundwater resource map is a must. According to nationally unified technical requirements of mapping groundwater resources put forward in 2018, this paper mainly interprets relevant principles, content, methods, diagrams as well as legend, and further to point out future directions: Higher precision will equal to higher demand of application, so that is there any more effective way to further interpret application aspect rather than only rules? 相似文献
2.
Under the organization of China Geological Survey,relevant departments have made industry specifications and technical requirements based on hydrogeological survey data collection at the scale of 1:50 000.Among them,groundwater resource map is a must.According to nationally unified technical requirements of mapping groundwater resources put forward in 2018,this paper mainly interprets relevant principles,content,methods,diagrams as well as legend,and further to point out future directions:Higher precision will equal to higher demand of application,so that is there any more effective way to further interpret application aspect rather than only rules? 相似文献
3.
With the ever-accelerating economic and social growth in Asia, the sustainable development of environment, economy and society of Asia and beyond, is severely constrained by a series of grave issues, such as global climate change, population explosion, resource shortage, and rampant disasters. The need for study on groundwater resources and environment in Asia as part of the efforts to tackle global climate change looms even larger. In analyzing how global changes of modern times and human activities are related to primary geo-environment, the groundwater environment serial maps of Asia introduces a new concept for mapping geo-environment of Asia that connects the geological background to groundwater environment. The serial maps reveal the geographic environment that is closely related to groundwater, the special-temporal features of the geo-environment and how it is distributed. The study is vital not only to the harmonious development among environment, economy and society as well as ecological progress in Asia, but also to the strategic requirements posed by the “One Belt One Road”. 相似文献
4.
5.
Climate change has become a major global concern and threatens the security of natural environmental resources, including groundwater, especially for Cambodia. In this study, literature reviews related to climate change and groundwater resources in Cambodia were evaluated to address the impact of climate change on the groundwater environment. In Cambodia, global climate change will likely affect available water resources by driving changes in the groundwater recharge and usage pattern. Despite a general increase in the mean annual rainfall, a reduction in rainfall is anticipated during the dry season, which could lead to shortages of fresh water during the dry season. The impact of climate change on water resource environments can significantly affect national economic development. Thus, strategic management plansfor groundwater in response to climate change should be established to ensure the security of water resources in Cambodia. 相似文献
6.
The national economy of Lao PDR is highly dependent on water resources. Consequently, the sustainable management of groundwater and successful adaptations to future climate change are major concerns. Climate projections for Lao PDR predict increased rainfall and hot weather, with more intense rainfall events and more frequent and severe droughts and floods. Under climate change, reductions in the amount and quality of groundwater are two critical problems. Reductions of the groundwater level will restrict the access of local people to groundwater resources, thereby posing a threat to food security and livelihoods. Lao PDR suffers from a limited number of human resources with the requisite skills to perform groundwater investigations and provide sustainable management. For the successful implementation of groundwater management plans, limitations associated with funding and technology should be resolved via support from the government and international cooperation. Advanced action plans for capacity building and training courses should be established to strengthen administrative and individual capacities. Technical measures, such as groundwater monitoring, aquifer characterizations, and water treatment systems, should be implemented to manage future climate change and water resource security. 相似文献
7.
Water resources play an important role in supporting the economic and social development of China. The impact of climate change on water resources has become a bottleneck in this process, especially for major projects, with surface water and groundwater systems experiencing considerable impacts. The annual natural recharge of fresh groundwater is 8 840×10~8 m~3, which accounts for approximately 31% of the water resources. Groundwater is the most significant water source for many cities and energy bases, and it is also the main source acting as a buffer against extreme climate events caused by climate change. However, most of the groundwater in China buried deeply and unevenly, which increases the difficulty of investigating and exploiting this resource.This paper illustrates the general conditions of China water resources and hydrogeological hazards, such as karst sinkholes, surface subsidence, and soil salinization, caused by climate change, El Nino, La Nina, other climate events and human activities and presents the regulatory measures enacted to mitigate these issues in China.The China Geological Survey(CGS) has organized professional teams to investigate and evaluate groundwater resources and the environment since 1999. Based on these investigations, the total quantity, expected exploitable quantity and current exploited quantity of groundwater in whole China have been evaluated. In addition, an evaluation of the groundwater pollution caused by climate change throughout China and key areas has been conducted. At present, the CGS is conducting national groundwater monitoring projects and establishing regional engineering and technical measures for water resource exploitation and utilization. 相似文献
8.
Analysis on exploitation status,potential and strategy of groundwater resources in the five countries of Central Asia 下载免费PDF全文
As an important part of water resources of the five countries of Central Asia, groundwater resources give critical supports to the regional economic development. Accompanied by rapid economic development, the demand of groundwater is increasing. As a result, the governments are paying more attention to groundwater resource development and utilization. However, there are noticeable issues and contradictions in water resource exploration in these countries. To be more specific, these countries lack the studies in development potential and conception planning, thus influencing the sustainable groundwater development. This paper mainly discusses groundwater development problems in the five countries of Central Asia, and briefly introduces volumes and distribution of transboundary groundwater. In addition, it analyzes the current exploitation status of groundwater and studies the potential in utilizing the resource. Most importantly, it proposes creative ways to address groundwater development issues: To make best of the resource, international cooperation is required. 相似文献
9.
Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan 总被引:1,自引:0,他引:1
The concentrations of fluorine in groundwater of North Jordan range from 0.009 to 0.055 mg/l. Other chemical parameters, e.g. pH, EC, TDS, Cl, TH, HCO3, PO4, SO4, NO3, NH4, K, Ca, Mg, and NO3 have been studied and showed higher concentrations in HCO3− and NO3− of 307 and 51 mg/l, respectively. Thermodynamic considerations show that almost all the analyzed samples are undersaturated with respect to calcite and fluorite. This undersaturation is probably due to their low availability in the locations. Fluoride concentration shows a positive relation to pH and HCO3, whereas Cl, Mg, Ca, and Na initially increase and then decrease with increasing fluoride in the water. Saturation indexes of fluorite and calcite are estimated. The chemistry of the groundwater is controlled by the fluorite and calcite solubility. The topography of the area has exerted control on the aerial extent of fluoride concentration. 相似文献
10.
Xia Dunsheng Jin Ming Liu Xiuming Chen Fahu Ma Jianying Zhao Hui Wang Xunming Wei Haitao 《Frontiers of Earth Science》2007,1(3):275-283
In this study, magnetic techniques were used to characterize the surface soil from different geomorphologies (i.e., sand desert,
oasis, Gobi, and dry lake) in Central Asia. Results demonstrate that the main magnetic minerals in the surface soil are magnetite,
maghaemite and haematite with some paramagnetic materials. Cross plots of M
rs/M
s versus B
cr/B
c and χfd% versus χarm/saturation isothermal remanent magnetization (SIRM) indicate that the main magnetic grain sizes in surface soil are pseudo
single domain (PSD) and multidomain (MD). The samples from West China (i.e., Tarim basin and Junggar basin) are dominated
by magnetic minerals with larger grain size, while those from North China (i.e., Alxa plateau, Erdos plateau, and Mongolia
plateau) are dominated by fine magnetic minerals. The similarity in magnetic mineral constitutions between the Chinese loess
and the surface soils from Central Asia implies that the loess originated from a vast area of arid, semi-arid regions of Central
Asia. The low value of concentration-dependent magnetic parameters indicates that the low concentration of magnetic minerals
in the surface soils from Central Asia and the magnetic enhancement from the pedogenic take place in both the loess and the
paleosols, although the progress is stronger in the latter.
Translated from Quaternary Sciences, 2006, 26(6): 937–946 [译自: 第四纪研究] 相似文献
11.
The natural groundwater recharge in Asia is estimated to be 4 677.74×109 m3/a. However, it features extremely uneven spatial-temporal distribution. Groundwater is distributed in various natural and geological environments, and it is liable to be affected by numerous factors and possesses different properties. Moreover, groundwater faces complex ecological problems. This paper gains a complete understanding of groundwater in Asia in terms of the structure of aquifer systems, the processes of groundwater cycle, and the spatial variation laws of surface ecosystems. Based on this, it proposes the ecological function zoning scheme of groundwater in Asia, aiming to provide guidance for the utilization of regional water resources and the planning for economic and social development, coordinate the relationship between social and economic development and water resource protection, and improve the ecological functions of groundwater. Furthermore, this paper analyzes the problems with regional groundwater management in Asia and puts forward countermeasures and suggestions, thus providing a theoretical basis for the sustainable development and utilization of regional groundwater and environmental protection. 相似文献
12.
The Middle East and North Africa (MENA) region is the world’s most water-stressed region, with its countries constituting 12 of the 15 most water-stressed countries globally. Because of data paucity, comprehensive regional-scale assessments of groundwater resources in the MENA region have been lacking. The presented study addresses this issue by using a distributed ArcGIS model, parametrized with gridded data sets, to estimate groundwater storage reserves in the region based on generated aquifer saturated thickness and effective porosity estimates. Furthermore, monthly gravimetric datasets (GRACE) and land surface parameters (GLDAS) were used to quantify changes in groundwater storage between 2003 and 2014. Total groundwater reserves in the region were estimated at 1.28 × 106 cubic kilometers (km3) with an uncertainty range between 816,000 and 1.93 × 106 km3. Most of the reserves are located within large sedimentary basins in North Africa and the Arabian Peninsula, with Algeria, Libya, Egypt, and Saudi Arabia accounting for approximately 75% of the region’s total freshwater reserves. Alternatively, small groundwater reserves were found in fractured Precambrian basement exposures. As for groundwater changes between 2003 and 2014, all MENA countries except for Morocco exhibited declines in groundwater storage. However, given the region’s large groundwater reserves, groundwater changes between 2003 and 2014 are minimal and represent no immediate short-term threat to the MENA region, with some exceptions. Notwithstanding this, the study recommends the development of sustainable and efficient groundwater management policies to optimally utilize the region’s groundwater resources, especially in the face of climate change, demographic expansion, and socio-economic development. 相似文献
13.
Numerous UHP suites developed in East Asia during the Paleozoic because subduction occurred in an area of low thermal gradients. By contrast, no Paleozoic UHP suites formed in North America or in terranes accreted to it because all subduction under accreting terranes occurred in an area of high thermal gradients centered in North America. High thermal gradients beneath North America are also demonstrated by an abundance of intracratonic rifts and basins. These differences in thermal gradients between North America and East Asia may have been caused by a very large mantle convection cell, with a rising limb under North America and a descending limb in an oceanic area where East Asia was assembled. 相似文献
14.
Holistic assessment of groundwater resources and regional environmental problems in the North China Plain 总被引:1,自引:1,他引:1
Jianyao Chen 《Environmental Earth Sciences》2010,61(5):1037-1047
Water balance components of the North China Plain (NCP) were analyzed, indicating the decrease both in precipitation and evaporation.
The decreased precipitation and expansion of water use for agriculture, industrial and domestic purposes have caused a water
crisis, which was managed until now by diverting water from the Yellow River and over exploitation of groundwater. The groundwater
resource was assessed by estimating its recharge in both upper unconfined and lower confined layers, yielding a total value
of 1.65 × 1010 m3/a. Total groundwater use was estimated and judged by the actual water table drawdown. Salt accumulation, water table decrease,
fluoride and nitrate pollution were all found to be major regional environmental problems. Furthermore, heavy metals were
found in high content in the soil and surface water in suburbs of large cities, posing a potential risk of pollution in the
groundwater. It has been verified by isotropic data that dry conditions have occurred since 10 ka and are therefore part of
the natural process. Possible solutions for water crises in the NCP are proposed. 相似文献
15.
高寒冻土区生物结皮对土壤理化属性的影响 总被引:1,自引:0,他引:1
生物结皮是高寒地区地被层的重要组分之一。其作为地表特殊的结构层,能够改变地表结构及土壤理化属性,从而影响冻土环境。迄今为止,关于青藏高原高寒生态系统中生物结皮对土壤理化属性的影响尚不清楚。以青藏高原高寒冻土区生物结皮为研究对象,初步研究了生物结皮的特征及其对土壤理化属性的影响。结果表明:生物结皮在高寒草甸退化过程中广泛发育,主要以藻结皮为主,其盖度可达37.3%~51.7%,结皮层平均厚度为12.6 mm。由于生物结皮的发育,高寒地区5~20 cm土层粉粒含量有所增加,但差异不显著,而结皮层土壤田间持水量相比于裸地表层(2 cm)增加了10%~40%,结皮层容重较裸地降低了30%;两种类型藻结皮均显著增加了结皮层及其下0~20 cm土层土壤有机质,而深色藻结皮增加了结皮层及其下0~20 cm土层土壤全氮含量,浅色藻结皮仅增加了结皮层土壤全氮含量,对其下0~20 cm土层土壤全氮含量没有显著影响;生物结皮对土壤pH没有显著影响;生物结皮是高寒生态系统植被退化过程中的关键环节。研究结果为揭示生物结皮在高寒生态系统中发挥重要生态功能提供依据。 相似文献
16.
超量开采地下水引发的地面沉降已成为制约北京区域社会经济可持续发展的重要因素之一。2014年12月,南水北调中线工程正式通水,每年向北京输水超过10×108 m3,改变了北京供水格局,也为地下水压采、涵养及控制地面沉降创造了条件。本文利用多种监测数据,分析南水进京前后,北京平原区地下水和地面沉降的变化;研究不同水位变化模式下不同岩性及深度土层的变形特征;计算土层不同变形阶段的弹性和非弹性储水率;并对黏性土层产生较大残余变形和滞后变形的原因进行了探讨。结果表明:① 2015~2020年,平原区大部分地区第一至第四含水层组地下水位逐渐上升,地面沉降呈减缓的趋势。② 第二和第三压缩层组是沉降主要贡献层,除平各庄和榆垡站外,其余各站第三压缩层组沉降占比逐渐增大,沉降主控层有向深部转移的规律。③ 平原区北部和东部,第二和第三压缩层组对应的地下水位由降转升。在水位下降阶段,土层呈塑性和蠕变变形;水位上升阶段,土层以塑性变形为主,部分时间出现弹性变形,具有黏弹塑性。平原区南部,地下水位始终持续下降,土层变形始终呈塑性和蠕变变形。含水砂层则主要呈弹性变形。④ 土层变形的不同阶段,弹性和非弹性储水率并不是恒定的,随着地下水位下降,储水率呈减小的趋势。⑤ 黏性土层存在较大残余变形和变形滞后的原因,一是非弹性储水率大于弹性储水率,二是黏性土层的弱渗透性。 相似文献
17.
18.
19.
In order to solve water resources problems in the North China Plain, this paper explored human-nature compound water circulation system from three aspects including urban flood control, surface drainage and saline water in the central and eastern of the North China Plain. Results show that: (1) The technical methods have achieved zero increase in rainwater runoff in urban areas, (2) surface drainage depletion problems can be solved through abandoned water and river water separation method, (3) and technical method through promoting rainwater infiltration would be used to solve problem of saline water in the central and eastern parts. This research provides a new perspective to the ultimate solutions to water resources problems in the North China Plain, and a fresh research direction for the development of hydro-geological science. 相似文献
20.
Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China 总被引:2,自引:0,他引:2
Shiqin Wang Jingli Shao Xianfang Song Yongbo Zhang Zhibin Huo Xiaoyuan Zhou 《Environmental Geology》2008,55(7):1449-1462
MODFLOW is a groundwater modeling program. It can be compiled and remedied according to the practical applications. Because
of its structure and fixed data format, MODFLOW can be integrated with Geographic Information Systems (GIS) technology for
water resource management. The North China Plain (NCP), which is the politic, economic and cultural center of China, is facing
with water resources shortage and water pollution. Groundwater is the main water resource for industrial, agricultural and
domestic usage. It is necessary to evaluate the groundwater resources of the NCP as an entire aquifer system. With the development
of computer and internet information technology it is also necessary to integrate the groundwater model with the GIS technology.
Because the geological and hydrogeological data in the NCP was mainly in MAPGIS format, the powerful function of GIS of disposing
of and analyzing spatial data and computer languages such as Visual C and Visual Basic were used to define the relationship
between the original data and model data. After analyzing the geological and hydrogeological conditions of the NCP, the groundwater
flow numerical simulation modeling was constructed with MODFLOW. On the basis of GIS, a dynamic evaluation system for groundwater
resources under the internet circumstance was completed. During the process of constructing the groundwater model, a water
budget was analyzed, which showed a negative budget in the NCP. The simulation period was from 1 January 2002 to 31 December
2003. During this period, the total recharge of the groundwater system was 49,374 × 106 m3 and the total discharge was 56,530 × 106 m3 the budget deficit was −7,156 × 106 m3. In this integrated system, the original data including graphs and attribution data could be stored in the database. When
the process of evaluating and predicting groundwater flow was started, these data were transformed into files that the core
program of MODFLOW could read. The calculated water level and drawdown could be displayed and reviewed online. 相似文献