首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Koji Fujita 《水文研究》2007,21(21):2892-2896
The impact of the timing of dust deposition on glacier runoff was evaluated using a glacier mass‐balance model with a newly improved scheme to track a dusted layer in a snow layer of a glacier. The lowering of surface albedo due to the dusted layer appearing leads to a drastic increase of glacier runoff even under the same meteorological conditions. Calculations of seasonal sensitivity, the relationship between dusted date and resulting runoff, have shown that dust deposition during a melting season might cause a drastic mass outflow from a glacier through changing the surface albedo during the melting season. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
CAMS云微物理方案的改进及与WRF模式耦合的个例研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文在中国气象科学研究院(CAMS)双参数云微物理方案的基础上,增加气溶胶粒子的活化过程,改进原方案中的水汽混合比、云水混合比及云滴数浓度的预报方程,实现对各种水成物(包括云水)的混合比和数浓度的预报.此外,改进后的CAMS云方案被成功耦合到了WRF v3.1中尺度模式.本文利用耦合模式对2009年4月23~24日发生在我国北方地区的一次降水天气过程进行了模拟,将新方案的模拟结果与WRF自带的3个微物理方案进行了比较.结果显示,新方案能够合理地描述地面降水特征,其模拟的雨带分布范围与实测接近,降水中心的强度和位置优于其他3个方案.新方案模拟的云滴数浓度与WDM6方案基本一致,表明加入的气溶胶活化过程是合理的.新方案模拟的其他水成物粒子数浓度与Morrison方案相比有时会有量级的差别,说明粒子数浓度的模拟目前还存在着很大的不确定性,这也是云微物理模式进一步发展的难点.  相似文献   

3.
2010年春季至夏季在中山站附近的固定冰面开展了固定冰反照率观测.在春夏过渡期,观测期间的表面反照率呈下降趋势,平均反照率从9月的0.80下降到12月的0.62,整个观测期间的平均值为0.70.雪厚是影响反照率变化的重要因子,融化前期的反照率受表面温度影响较大,干雪期反照率对表面温度并不敏感.降雪可通过增加表面雪厚和减小表面积雪粒径显著增加反照率,云层则可通过吸收入射太阳光中的近红外波段增加反照率,降雪和阴天反照率可比晴天观测平均增加0.18和0.06;吹雪则可通过改变积雪光学厚度导致反照率发生显著变化.受太阳天顶角变化和积雪变性的共同影响,晴天或少云时的反照率在上午随太阳天顶角呈准线性递减,下午则几乎不发生变化;最高值、最低值分别出现在凌晨和下午.本文提出了一组分别表述厚干雪、薄干雪和湿雪反照率日变化的参数化方案,通过太阳天顶角的线性函数隐式考虑进了积雪变性的影响.相比常数反照率方案,该参数化方案能有效提高对反照率日变化的估算能力.  相似文献   

4.
M. Su  W. J Stolte  G van der Kamp 《水文研究》2000,14(14):2405-2422
A hydrological model (SLURP) that was designed for simulating hydrological processes taking place in large river basins was, with minimal modification, used successfully to simulate water level variations over a 28‐year period (1969–1996) for a 3‐ha prairie wetland in Saskatchewan. The model calculates a water balance based on precipitation, snowmelt, evaporation, surface runoff and subsurface flow on a daily time‐step. The model was first calibrated for two periods (1969–1973 for cropland and 1987–1990 for grassland), then it was applied to records outside the calibration periods. The model reproduced the wetland water level variations during a 28‐year period with good accuracy. The wetland water levels were most sensitive to the infiltration coefficient of surface soil under frozen conditions and to maximum soil moisture storage. The applicability of the model and the calibrated parameters to a smaller wetland, with an area of 0·24 ha, was examined. This simulation indicated that scale effects are important, probably largely in relation to snow redistribution by wind. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM–LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.  相似文献   

6.
Precipitation types in winter storms   总被引:2,自引:0,他引:2  
The characteristics of and the evolution between snow, rain, ice pellets, and freezing rain are discussed. Precipitation type and the nature of its size distribution and extent are related to the melting behaviour of snow. Model calculations of this melting show the progression of precipitation type from freezing rain to ice pellets and finally to snow, as melting systematically erodes an upper level inversion within about 5 h for a precipitation rate of 1mm h–1. The increase in temperature of the low level subfreezing region associated with ice pellet formation (up to 1°C) should furthermore be detectable. These phase transitions between the various precipitation types, as affected by atmospheric cooling by melting, are predicted to occur over mesoscale distances.  相似文献   

7.
P. MARSH  J. W. POMEROY 《水文研究》1996,10(10):1383-1400
Models of surface energy balance and snow metamorphism are utilized to predict the energy and meltwater fluxes at an Arctic site in the forest–tundra transition zone of north-western Canada. The surface energy balance during the melt period is modelled using an hourly bulk aerodynamic approach. Once a snowcover becomes patchy, advection from the bare patches to the snow-covered areas results in a large spatial variation in basin snowmelt. In order to illustrate the importance of small-scale, horizontal advection, a simple parameterization scheme using sensible heat fluxes from snow free areas was tested. This scheme estimates the maximum horizontal advection of sensible heat from the bare patches to the snow-covered areas. Calculated melt was routed through the measured snowcover in each landscape type using a variable flow path, meltwater percolation model. This allowed the determination of the spatial variability in the timing and magnitude of meltwater release for runoff. Model results indicate that the initial release of meltwater first occurred on the shallow upland tundra sites, but meltwater release did not occur until nearly two weeks later on the deep drift snowcovers. During these early periods of melt, not all meltwater is available for runoff. Instead, there is a period when some snowpacks are only partially contributing to runoff, and the spatial variation of runoff contribution corresponds to landscape type. Comparisons of melt with and without advection suggests that advection is an important process controlling the timing of basin snowmelt.  相似文献   

8.
The isotopic composition of solid and liquid portions of natural melting snowpack is investigated in detail by the separating of liquid water from snow grains at different depths of the snowpack. The slope of the δD–δ18O line for the liquid phase is found to be lower than for the solid phase. This is proved to be due to the isotopic fractionation occurring in the melt–freeze mass exchange within the snowpack. Melting of the snowpack has no clear impact on the δD–δ18O line for the solid phase, but the slope of the δD–δ18O line for the liquid shows an overall slight decrease in the melting period. When the snowpack is refrozen, the refreezing process would inevitably cause the slope of the solid phase to decrease because of the discrepancy between the slopes of the two phases. Thus the slope of the solid would become lower and lower as the diurnal melt–freeze episodes cycle throughout the melting season. This effect is then demonstrated by looking into the isotopic composition changes of glacier firn. The extent of the effect depends on the snowpack properties and environmental conditions. The slope changes also result in a decreasing trend in deuterium excess. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we used the Regional Hydro‐Ecological Simulation System (RHESSys) model to examine runoff sensitivity to land cover changes in a mountain environment. Two independent experiments were evaluated where we conducted simulations with multiple vegetation cover changes that include conversion to grass, no vegetation cover and deciduous/coniferous cover scenarios. The model experiments were performed at two hillslopes within the Weber River near Oakley, Utah watershed (USGS gauge # 10128500). Daily precipitation, air temperature and wind speed data as well as spatial data that include a digital elevation model with 30 m grid resolution, soil texture map and vegetation and land use maps were processed to drive RHESSys simulations. Observed runoff data at the watershed outlet were used for calibration and verification. Our runoff sensitivity results suggest that during winter, reduced leaf area index (LAI) decreases canopy interception resulting in increased snow accumulations and hence snow available for runoff during the early spring melt season. Increased LAI during the spring melt season tends to delay the snow melting process. This delay in snow melting process is due to reduced radiation beneath high LAI surfaces relative to low LAI surfaces. The model results suggest that annual runoff yield after removing deciduous vegetation is on average about 7% higher than with deciduous vegetation cover, while annual runoff yield after removing coniferous vegetation is on average as about 2% higher than that produced with coniferous vegetation cover. These simulations thus help quantify the sensitivity of water yield to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We analyse spatial variability and different evolution patterns of snowpack in a mixed beech–fir stand in the central Pyrenees. Snow depth and density were surveyed weekly along six transects of contrasting forest cover during a complete accumulation and melting season; we also surveyed a sector unaffected by canopy cover. Forest density was measured using the sky view factor (SVF) obtained from digital hemispherical photographs. During periods of snow accumulation and melting, noticeable differences in snow depth and density were found between the open site and those areas covered by forest canopy. Principal component analysis provided valuable information in explaining these observations. The results indicate a high variability in snow accumulation within forest areas related to differences in canopy density. Maximum snow water equivalent (SWE) was reduced by more than 50% beneath dense canopies compared with clearings, and this difference increased during the melting period. We also found significant temporal variations: when melting began in sectors with low SVF, most of the snow had already thawed in areas with high SVF. However, specific conditions occasionally produced a different response of SWE to forest cover, with lower melting rates observed beneath dense canopies. The high values of correlation coefficients for SWE and SVF (r > 0·9) indicate the reliability of predicting the spatial distribution of SWE in forests when only a moderate number of observations are available. Digital hemispherical photographs provide an appropriate tool for this type of analysis, especially for zenith angles in the range 35–55 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
To improve simulations of regional‐scale snow processes and related cold‐season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth‐generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land‐surface model. One important cause for the underestimated SWE in Noah is its unrealistic land‐surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow‐season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near‐surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over‐predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5–CLM3 due to the lower evaporation resulting from the longer snow duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Several possible effects of blowing snow on the atmospheric boundary layer are investigated, mostly within the general framework of the Prairie Blowing Snow Model (PBSM). The processes of snow saltation and suspension are first described. Variations to the drift density profile are tested and the effects of stratification and density variation calculations are evaluated. Despite high density gradients of blowing snow, stratification effects on turbulence and the velocity profiles can generally be neglected. However, with saltating or suspended snow in a constant shear stress layer, part of the shear stress is carried by the particles. A highly simplified, single-phase approach, based on the density variation of the air–snow mixture coupled to a simple turbulent stress–strain relationship, is used to illustrate this. Sublimation rates in a column of blowing snow are calculated using the PBSM and results are compared with those obtained with a modified formulation which incorporates a spectrum of sublimating particles of varying sizes at each height in a steady-state surface boundary layer and different specifications of the ventilation velocity.  相似文献   

13.
In this study, the Cold Regions Hydrological Modelling platform was used to create an alpine snow model including wind redistribution of snow and energy balance snowmelt to simulate the snowpack over the period 1996–2009 in a small (33 ha) snow‐dominated basin in the Spanish Pyrenees. The basin was divided into three hydrological response units (HRUs), based on contrasting physiographic and aerodynamic characteristics. A sensitivity analysis was conducted to calculate the snow water equivalent regime for various combinations of temperature and precipitation that differed from observed conditions. The results show that there was large inter‐annual variability in the snowpack in this region of the Pyrenees because of its marked sensitivity to climatic conditions. Although the basin is small and quite homogeneous, snowpack seasonality and inter‐annual evolution of the snowpack varied in each HRU. Snow accumulation change in relation to temperature change was approximately 20% for every 1 °C, and the duration of the snowpack was reduced by 20–30 days per °C. Melting rates decreased with increased temperature, and wind redistribution of snow was higher with decreased temperature. The magnitude and sign of changes in precipitation may markedly affect the response of the snowpack to changes in temperature. There was a non‐linear response of snow to individual and combined changes in temperature and precipitation, with respect to both the magnitude and sign of the change. This was a consequence of the complex interactions among climate, topography and blowing snow in the study basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high‐altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial–temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from the Moderate Resolution Imaging Spectroradiometer snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree–day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9–3 days/10a and the end time of snow melt has become later by 0.6–2.3 days/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6% and 6.8%, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Model calculations are made in order to understand the characteristics and response to climate change of runoff from a cold glacier on the Tibetan Plateau. Some 20% of meltwater is preserved at the snow–ice boundary due to refreezing, since the glaciers in mid to northern Tibet are sufficiently cooled during the previous winter. Sensitivity to alterations in meteorological parameters has revealed that a change in air temperature would cause not only an increase in melting by sensible heat, but also a drastic increase in melting due to lowering of the albedo, since some of the snowfall changes to rainfall. In addition, it was suggested that a decrease in precipitation would cause a lowering of the surface albedo, with a resulting increase in the contribution of glacier runoff to the total runoff of river water. This study shows the first quantitative evaluation of the above effects, though they have been suggested qualitatively. The seasonal sensitivity of glacier runoff was examined by changing the dates given for a meteorological perturbation for a period of only 5 days. It was revealed that changes in both air temperature and precipitation during the melting season strongly affected glacier runoff by changing the surface albedo, though these perturbations only slightly altered the annual averages. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Accurate snow accumulation and melt simulations are crucial for understanding and predicting hydrological dynamics in mountainous settings. As snow models require temporally varying meteorological inputs, time resolution of these inputs is likely to play an important role on the model accuracy. Because meteorological data at a fine temporal resolution (~1 hr) are generally not available in many snow‐dominated settings, it is important to evaluate the role of meteorological inputs temporal resolution on the performance of process‐based snow models. The objective of this work is to assess the loss in model accuracy with temporal resolution of meteorological inputs, for a range of climatic conditions and topographic elevations. To this end, a process‐based snow model was run using 1‐, 3‐, and 6‐hourly inputs for wet, average, and dry years over Boise River Basin (6,963 km2), which spans rain dominated (≤1,400 m), rain–snow transition (>1,400 and ≤1,900 m), snow dominated below tree line (>1,900 and ≤2,400 m), and above tree line (>2,400 m) elevations. The results show that sensitivity of the model accuracy to the inputs time step generally decreases with increasing elevation from rain dominated to snow dominated above tree line. Using longer than hourly inputs causes substantial underestimation of snow cover area (SCA) and snow water equivalent (SWE) in rain‐dominated and rain–snow transition elevations, due to the precipitation phase mischaracterization. In snow‐dominated elevations, the melt rate is underestimated due to errors in estimation of net snow cover energy input. In addition, the errors in SCA and SWE estimates generally decrease toward years with low snow mass, that is, dry years. The results indicate significant increases in errors in estimates of SCA and SWE as the temporal resolution of meteorological inputs becomes coarser than an hour. However, use of 3‐hourly inputs can provide accurate estimates at snow‐dominated elevations. The study underscores the need to record meteorological variables at an hourly time step for accurate process‐based snow modelling.  相似文献   

17.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

18.
Ablation processes of snow under a thin dust cover are complicated compared with those under a thick cover, mainly owing to the effects of aggregation (redistribution) of dust particles on the conditions of surface melting. Aggregation of dust particles causes the snow surface to brighten after the initial dust configuration, thus affecting the relationship between initial dust concentration and surface albedo. In order to estimate snow ablation rate under a thin dust cover, we used a composite energy balance model in which the surface albedo is taken as a measured input variable. The estimated results of snow ablation agreed reasonably well with the observation, considering the measurement errors inherited in the snow depressions. Comparison of the two cases, that is, one considering the aggregation of dust particles (observation: albedo variable) and the other without aggregation (assumption: albedo constant), showed that the ablation rates were noticeably lower on the former case. This suggests that the aggregation of dust particles induces a reduction of snow ablation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
There are several levels of models for the snowmelt process in terms of the snow thermal structure: isothermal, bi-layered and multi-layered models. However, it is difficult to choose the appropriate level of complexity for application because the number of unknown variables is crucial in model handling. One of the major issues in energy balance snow models is the shape of the snow temperature vertical profile. This profile, if taken as a specified function, would simplify a snowmelt model calibration and computation significantly. In this study, in order to determine the appropriate representative snow vertical thermal profile, snow temperature measurements have been performed using five snow thermocouples placed vertically along an observation tower with insulating arms. Also, as a field experimental study of an energy balance snow model, the net radiation, air temperature, relative humidity and wind speed along with the vertical one dimensional snow temperature profile have been observed at a field site in Lake Tahoe Basin. The computational results correspond with the measured snow temperature profile and snow water equivalent reasonably well. It is illustrated that the temperature in the snow near surface (called the “active layer”) varies daily, and the lower snow layer (called the “inactive layer”) is barely affected by the atmosphere. The results of field observations and the numerical experiments show that the vertical temperature distributions in the active layer, which is the upper layer affected by energy exchange with the atmosphere, generally have an exponential shape during night time under cold weather, while snow pack stays around 0 °C during daytime. Both of the results indicate that not only the snow temperature in the top active layer, but also the thickness of snow active layer fluctuates during the snowmelt process. The observation results show that the thickness of the active layer may reach about 60 cm in Sierra Nevada, California. These results provide significant information for the development of appropriate approximations in physically based snowmelt modeling.  相似文献   

20.
The performance of temperature‐index melt models is particularly affected by the choice of near‐surface lapse rate used to determine the sum of positive daily temperatures at different elevations, and by the choice of factor used to relate this sum to the rate of melting. Data from the Langjökull ice cap are used in this study to quantify the influence of lapse‐rate and degree‐day factor variation on temperature‐index melt simulations. The lapse rate was significantly lower during summer than in spring or autumn, as a result of diabatic cooling, reducing boundary‐layer sensitivity to free‐air temperature change. The summer lapse rate was also significantly lower than the saturated adiabatic lapse rate. A sensitivity of approximately 600 mm water equivalent (w.e.) cumulative June–August melt per 0.1 °C 100 m–1 change in lapse rate was found across a 500‐m altitude range. The sensitivity to a 1‐mm w.e. °C–1 day–1 change in degree‐day factors varied more: from approximately 500 mm w.e. cumulative summer melt at low elevation to approximately 200 mm w.e. at high elevation, reflecting the decline in melt rates associated with the greater persistence of snow with increasing altitude. The determination of a degree‐day factor for snow is complicated by the densification of the ageing snowpack, but the application of a parameterization for near‐surface density on the basis of albedo helped account for the development of snow water equivalence. Lapse rate was parameterized as a function of standardized anomalies in 750 hPa reanalysis temperature and significantly improved the simulation of cumulative summer melt compared with models applying the saturated adiabatic lapse rate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号