首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Land surface processes and their initialisation are of crucial importance for Numerical Weather Prediction (NWP). Current land data assimilation systems used to initialise NWP models include snow depth analysis, soil moisture analysis, soil temperature and snow temperature analysis. This paper gives a review of different approaches used in NWP to initialise land surface variables. It discusses the observation availability and quality, and it addresses the combined use of conventional observations and satellite data. Based on results from the European Centre for Medium-Range Weather Forecasts (ECMWF), results from different soil moisture and snow depth data assimilation schemes are shown. Both surface fields and low-level atmospheric variables are highly sensitive to the soil moisture and snow initialisation methods. Recent developments of ECMWF in soil moisture and snow data assimilation improved surface and atmospheric forecast performance.  相似文献   

2.
The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.  相似文献   

3.
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The Mediterranean Forecasting System (MFS) has been operational for a decade, and is continuously providing forecasts and analyses for the region. These forecasts comprise local- and basin-scale information of the environmental state of the sea and can be useful for tracking oil spills and supporting search-and-rescue missions. Data assimilation is a widely used method to improve the forecast skill of operational models and, in this study, the three-dimensional variational (OceanVar) scheme has been extended to include Argo float trajectories, with the objective of constraining and ameliorating the numerical output primarily in terms of the intermediate velocity fields at 350 m depth. When adding new datasets, it is furthermore crucial to ensure that the extended OceanVar scheme does not decrease the performance of the assimilation of other observations, e.g., sea-level anomalies, temperature, and salinity. Numerical experiments were undertaken for a 3-year period (2005–2007), and it was concluded that the Argo float trajectory assimilation improves the quality of the forecasted trajectories with ~15%, thus, increasing the realism of the model. Furthermore, the MFS proved to maintain the forecast quality of the sea-surface height and mass fields after the extended assimilation scheme had been introduced. A comparison between the modeled velocity fields and independent surface drifter observations suggested that assimilating trajectories at intermediate depth could yield improved forecasts of the upper ocean currents.  相似文献   

5.
Radiance data assimilation for operational snow and streamflow forecasting   总被引:1,自引:0,他引:1  
Estimation of seasonal snowpack, in mountainous regions, is crucial for accurate streamflow prediction. This paper examines the ability of data assimilation (DA) of remotely sensed microwave radiance data to improve snow water equivalent prediction, and ultimately operational streamflow forecasts. Operational streamflow forecasts in the National Weather Service River Forecast Center (NWSRFC) are produced with a coupled SNOW17 (snow model) and SACramento Soil Moisture Accounting (SAC-SMA) model. A comparison of two assimilation techniques, the ensemble Kalman filter (EnKF) and the particle filter (PF), is made using a coupled SNOW17 and the microwave emission model for layered snow pack (MEMLS) model to assimilate microwave radiance data. Microwave radiance data, in the form of brightness temperature (TB), is gathered from the advanced microwave scanning radiometer-earth observing system (AMSR-E) at the 36.5 GHz channel. SWE prediction is validated in a synthetic experiment. The distribution of snowmelt from an experiment with real data is then used to run the SAC-SMA model. Several scenarios on state or joint state-parameter updating with TB data assimilation to SNOW-17 and SAC-SMA models were analyzed, and the results show potential benefit for operational streamflow forecasting.  相似文献   

6.
A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.  相似文献   

7.
A probabilistic fog forecast system was designed based on two high resolution numerical 1-D models called COBEL and PAFOG. The 1-D models are coupled to several 3-D numerical weather prediction models and thus are able to consider the effects of advection. To deal with the large uncertainty inherent to fog forecasts, a whole ensemble of 1-D runs is computed using the two different numerical models and a set of different initial conditions in combination with distinct boundary conditions. Initial conditions are obtained from variational data assimilation, which optimally combines observations with a first guess taken from operational 3-D models. The design of the ensemble scheme computes members that should fairly well represent the uncertainty of the current meteorological regime. Verification for an entire fog season reveals the importance of advection in complex terrain. The skill of 1-D fog forecasts is significantly improved if advection is considered. Thus the probabilistic forecast system has the potential to support the forecaster and therefore to provide more accurate fog forecasts.  相似文献   

8.
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or land surface (skin) temperature. Data assimilation can then be used to estimate variables that are not directly observed from space but are needed for applications, for instance root zone soil moisture or land surface fluxes. The paper provides a brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions. Our general overview is readily accessible to hydrologic remote sensing scientists. Within the general context of Earth science data assimilation, we point to examples of the assimilation of remotely sensed observations in land surface hydrology.  相似文献   

9.
Local extreme rain usually resulted in disasters such as flash floods and landslides. Upon today, it is still one of the most difficult tasks for operational weather forecast centers to predict those events accurately. In this paper, we simulate an extreme precipitation event with ensemble Kalman filter (EnKF) assimilation of Doppler radial-velocity observations, and analyze the uncertainties of the assimilation. The results demonstrate that, without assimilation radar data, neither a single initialization of deterministic forecast nor an ensemble forecast with adding perturbations or multiple physical parameterizations can predict the location of strong precipitation. However, forecast was significantly improved with assimilation of radar data, especially the location of the precipitation. The direct cause of the improvement is the buildup of a deep mesoscale convection system with EnKF assimilation of radar data. Under a large scale background favorable for mesoscale convection, efficient perturbations of upstream mid-low level meridional wind and moisture are key factors for the assimilation and forecast. Uncertainty still exists for the forecast of this case due to its limited predictability. Both the difference of large scale initial fields and the difference of analysis obtained from EnKF assimilation due to small amplitude of initial perturbations could have critical influences to the event's prediction. Forecast could be improved through more cycles of EnKF assimilation. Sensitivity tests also support that more accurate forecasts are expected through improving numerical models and observations.  相似文献   

10.
Snow interception is a crucial hydrological process in cold regions needleleaf forests, but is rarely measured directly. Indirect estimates of snow interception can be made by measuring the difference in the increase in snow accumulation between the forest floor and a nearby clearing over the course of a storm. Pairs of automatic weather stations with acoustic snow depth sensors provide an opportunity to estimate this, if snow density can be estimated reliably. Three approaches for estimating fresh snow density were investigated: weighted post-storm density increments from the physically based Snobal model, fresh snow density estimated empirically from air temperature (Hedstrom, N. R., et al. [1998]. Hydrological Processes, 12, 1611–1625), and fresh snow density estimated empirically from air temperature and wind speed (Jordan, R. E., et al. [1999]. Journal of Geophysical Research, 104, 7785–7806). Automated snow depth observations from adjacent forest and clearing sites and estimated snow densities were used to determine snowstorm snow interception in a subalpine forest in the Canadian Rockies, Alberta, Canada. Then the estimated snow interception and measured interception information from a weighed, suspended tree and a time-lapse camera were assimilated into a model, which was created using the Cold Regions Hydrological Modelling platform (CRHM), using Ensemble Kalman Filter or a simple rule-based direct insertion method. Interception determined using density estimates from the Hedstrom-Pomeroy fresh snow density equation agreed best with observations. Assimilating snow interception information from automatic snow depth measurements improved modelled snow interception timing by 7% and magnitude by 13%, compared to an open loop simulation driven by a numerical weather model; its accuracy was close to that simulated using locally observed meteorological data. Assimilation of tree-measured snow interception improved the snow interception simulation timing and magnitude by 18 and 19%, respectively. Time-lapse camera snow interception information assimilation improved the snow interception simulation timing by 32% and magnitude by 7%. The benefits of assimilation were greatly influenced by assimilation frequency and quality of the forcing data.  相似文献   

11.
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.  相似文献   

12.
This paper addresses the representation of lower tropospheric water vapor in the meteorological analyses—fully detailed estimates of atmospheric state—providing the wide temporal and spatial coverage used in many process studies. Analyses are produced in a cycle combining short forecasts from initial conditions with data assimilation that optimally estimates the state of the atmosphere from the previous forecasts and new observations, providing initial conditions for the next set of forecasts. Estimates of water vapor are among the less certain aspects of the state because the quantity poses special challenges for data assimilation while being particularly sensitive to the details of model parameterizations. Over remote tropical oceans observations of water vapor come from two sources: passive observations at microwave or infrared wavelengths that provide relatively strong constraints over large areas on column-integrated moisture but relatively coarse vertical resolution, and occultations of Global Positioning System provide much higher accuracy and vertical resolution but are relatively spatially coarse. Over low-latitude oceans, experiences with two systems suggest that current analyses reproduce much of the large-scale variability in integrated water vapor but have systematic errors in the representation of the boundary layer with compensating errors in the free troposphere; these errors introduce errors of order 10% in radiative heating rates through the free troposphere. New observations, such as might be obtained by future observing systems, improve the estimates of water vapor but this improvement is lost relatively quickly, suggesting that exploiting better observations will require targeted improvements to global forecast models.  相似文献   

13.
Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.  相似文献   

14.
Improvement of snow depth retrieval for FY3B-MWRI in China   总被引:3,自引:0,他引:3  
The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave Radiation Imager(FY3B-MWRI)in China.Based on 7-year(2002–2009)observations of brightness temperature by the Advanced Microwave Scanning Radiometer-EOS(AMSR-E)and snow depth from Chinese meteorological stations,we develop a semi-empirical snow depth retrieval algorithm.When its land cover fraction is larger than 85%,we regard a pixel as pure at the satellite passive microwave remote-sensing scale.A 1-km resolution land use/land cover(LULC)map from the Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences,is used to determine fractions of four main land cover types(grass,farmland,bare soil,and forest).Land cover sensitivity snow depth retrieval algorithms are initially developed using AMSR-E brightness temperature data.Each grid-cell snow depth was estimated as the sum of snow depths from each land cover algorithm weighted by percentages of land cover types within each grid cell.Through evaluation of this algorithm using station measurements from 2006,the root mean square error(RMSE)of snow depth retrieval is about 5.6 cm.In forest regions,snow depth is underestimated relative to ground observation,because stem volume and canopy closure are ignored in current algorithms.In addition,comparison between snow cover derived from AMSR-E and FY3B-MWRI with Moderate-resolution Imaging Spectroradiometer(MODIS)snow cover products(MYD10C1)in January 2010 showed that algorithm accuracy in snow cover monitoring can reach 84%.Finally,we compared snow water equivalence(SWE)derived using FY3B-MWRI with AMSR-E SWE products in the Northern Hemisphere.The results show that AMSR-E overestimated SWE in China,which agrees with other validations.  相似文献   

15.
Glaciers are commonly located in mountainous terrain subject to highly variable meteorological conditions. High resolution meteorological (HRM) data simulated by atmospheric models can complement meteorological station observations in order to assess changes in glacier energy fluxes and mass balance. We examine the performance of two snow models, SnowModel and Alpine3D, forced by different meteorological data for winter mass balance simulations at four glaciers in the Canadian portion of the Columbia Basin. The Weather Research and Forecasting model (WRF) with resolution of 1 km and the North American Land Data Assimilation System with ~12 km resolution, provide HRM data for the two snow models. Evaluation is based on the ability of the snow models to simulate snow depth at both point locations (automated snow weather stations) and over the entire glacier surface (airborne LiDAR [Light Detection and Ranging] surveys) during the 2015/2016 winter accumulation. When forced with HRM data, both models can reproduce snow depth to within ±15% of observed values. Both models underestimate winter mass balance when forced by HRM data. When driven with WRF data, SnowModel underestimates winter mass balance integrated over the glacier area by 1 and 10%, whilst Alpine3D underestimates winter mass balance by 12 and 22% compared with LiDAR and stake measurements, respectively. The overall results show that SnowModel forced by WRF simulated winter mass balance the best.  相似文献   

16.
何文英  陈洪滨  李军 《地球物理学报》1954,63(10):3573-3584
复杂多变的陆地表微波比辐射率,造成陆面上星载微波观测反演大气参数较为困难,也使得许多卫星微波资料不易同化应用到数值模式,因此迫切需要提供准确可靠的陆面微波地表比辐射率信息.随着卫星观测技术的迅速发展,利用丰富的星载被动微波观测直接反演陆面微波比辐射率成为一种主要手段.国外针对星载微波成像仪和微波垂直探测器开展较为系统的陆面微波比辐射率研究,建立不同类型的地表比辐射率反演方法,开发地表比辐射率参数化方法并应用于辐射资料同化.对于卫星观测反演陆面微波比辐射率存在的问题,开展了评估分析和方法订正.国内利用卫星观测也开展了一些陆面微波比辐射率研究工作,尚需要系统、综合的提炼.对于地表特征复杂的中国地区,还需要评估认识不同陆面微波比辐射率反演方法在我国适用情况,需要增强陆面微波比辐射率数据质量的认识以及业务应用.  相似文献   

17.
Eleven years of daily 500 m gridded Terra Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD10A1) snow cover fraction (SCF) data are evaluated in terms of snow presence detection in Colorado and Washington states. The SCF detection validation study is performed using in‐situ measurements and expressed in terms of snow and land detection and misclassification frequencies. A major aspect addressed in this study involves the shifting of pixel values in time due to sensor viewing angles and gridding artifacts of MODIS sensor products. To account for this error, 500 m gridded pixels are grouped and aggregated to different‐sized areas to incorporate neighboring pixel information. With pixel aggregation, both the probability of detection (POD) and the false alarm ratios increase for almost all cases. Of the false negative (FN) and false positive values (referred to as the total error when combined), FN estimates dominate most of the total error and are greatly reduced with aggregation. The greatest POD increases and total error reductions occur with going from a single 500 m pixel to 3×3‐pixel averaged areas. Since the MODIS SCF algorithm was developed under ideal conditions, SCF detection is also evaluated for varying conditions of vegetation, elevation, cloud cover and air temperature. Finally, using a direct insertion data assimilation approach, pixel averaged MODIS SCF observations are shown to improve modeled snowpack conditions over the single pixel observations due to the smoothing of more error‐prone observations and more accurately snow‐classified pixels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
High-resolution models and realistic boundary conditions are necessary to reproduce the mesoscale dynamics of the Gulf of Mexico (GOM). In order to achieve this, we use a nested configuration of the Hybrid Coordinate Ocean Model (HYCOM), where the Atlantic TOPAZ system provides lateral boundary conditions to a high-resolution (5 km) model of the GOM . However, such models cannot provide accurate forecasts of mesoscale variability, such as eddy shedding event, without data assimilation. Eddy shedding events involve the rapid growth of nonlinear instabilities that are difficult to forecast. The known sources of error are the initial state, the atmospheric condition, and the lateral boundary condition. We present here the benefit of using a small ensemble forecast (10 members) for providing confidence indices for the prediction, while using a data assimilation scheme based on optimal interpolation. Our set of initial states is provided by using different values of a data assimilation parameter, while the atmospheric and lateral boundary conditions are perturbed randomly. Changes in the data assimilation parameter appear to control the main position of the large features of the GOM in the initial state, whereas changes in the boundary conditions (lateral and atmospheric) appears to control the propagation of cyclonic eddies at their boundary. The ensemble forecast is tested for the shedding of Eddy Yankee (2006). The Loop Current and eddy fronts observed from ocean color and altimetry are almost always within the estimated positions from the ensemble forecast. The ensemble spread is correlated both in space and time to the forecast error, which implies that confidence indices can be provided in addition to the forecast. Finally, the ensemble forecast permits the optimization of a data assimilation parameter for best performance at a given forecast horizon.  相似文献   

19.
The retrieval of Snow Water Equivalent (SWE) from remote sensing satellites continues to be a very challenging problem. In this paper, we evaluate the accuracy of a new SWE product derived from the blending of a passive microwave SWE product based on the Advanced Microwave Sounding Unit (AMSU) with a multi‐sensor snow cover extent product based on the Interactive Multi‐sensor Snow and Ice Mapping System (IMS). The microwave measurements have the ability to penetrate the snow pack, and thus, the retrieval of SWE is best accomplished using the AMSU. On the other hand, the IMS maps snow cover more reliably due to the use of multiple satellite and ground observations. The evolution of global snow cover from the blended, the AMSU and the IMS products was examined during the 2006 snow season. Despite the overall good inter‐product agreement, it was shown that the retrievals of snow cover extent in the blended product are improved when using IMS, with implications for improved microwave retrievals of SWE. In a separate investigation, the skill of the microwave SWE product was also examined for its ability to correctly estimate SWE globally and regionally. Qualitative evaluation of global SWE retrievals suggested dependence on land surface temperature: the lower the temperature, the higher the SWE retrieved. This temperature bias was attributed in part to temperature effects on those snow properties that impact microwave response. Therefore, algorithm modifications are needed with more dynamical adjustments to account for changing snow cover. Quantitative evaluation over Slovakia in central Europe, for a limited period in 2006, showed reasonably good performance for SWE less than 100 mm. Sensitivity to deeper snow decreased significantly. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
To improve simulations of regional‐scale snow processes and related cold‐season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth‐generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land‐surface model. One important cause for the underestimated SWE in Noah is its unrealistic land‐surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow‐season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near‐surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over‐predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5–CLM3 due to the lower evaporation resulting from the longer snow duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号