共查询到20条相似文献,搜索用时 15 毫秒
1.
Our understanding of how grain boundaries (GBs) can dramatically influence key mineral properties such as creep and diffusion depends on knowledge of their detailed atomic and electronic structures. For this purpose, we simulate different types of tilt GBs, (0l1)/[100], (1l0)/[001] and (012)/[100] modeled with stepped and non-stepped surfaces in Mg2SiO4 forsterite using a first-principles approach based on density functional theory. Our results suggest that several configurations arising from Mg-terminated planes with tilt angles ranging from 16° to 67° are energetically competitive over the entire pressure regime (0–17 GPa) studied. At the ambient pressure, the predicted important features of the boundaries include distorted bonds (Si–O and Mg–O distances changed by 1 and 4 %, respectively), coordination defects (four and fivefold Mg–O coordination), and void spaces (0.2–0.9 × 10?10 m3/m2). Also, the interface induces splitting of electronic states from the conduction band and kinks at the top of the valence band. These structural and electronic features continue to exist at higher pressures. The formation enthalpy and excess volume for each boundary configuration studied were shown to systematically increase and decrease, respectively, with pressure. The predicted energy range (0.8–1.7 J/m2 at zero pressure) widens by a factor of two at 17 GPa (1.1–2.8 J/m2). The presence of low-density and structurally distorted regions imply that these GBs can serve as primary impurity segregation sites, fast diffusion pathways, and electron-trapped regions, which all are relevant for mantle rheology. 相似文献
2.
The electric field gradient (EFG) in Mg2SiO4 is calculated on the basis of the extended point ion model, including the local term of the overlap contribution. The agreement with experimental data deduced from the quadrupole coupling constants and principal axes at the Mg sites is quite good. The results of the present calculation exhibit a small overlap contribution to the EFG at M1 and a clearly bigger one at M2, whereas the lattice contribution to the EFG at M1 and M2 is reversed. The distinct overlap effects are assumed to be due to the particular Mg2SiO4 crystal structure and the different point symmetry at M1 and M2. The oxygen polarizability and charge used to calculate the EFG tensor were found to be smaller than the theoretical polarizability and formal charge, respectively. The sign of the Mg quadrupole coupling constants at M1 and M2, which has not been determined experimentally, results from the EFG calculation as positive. 相似文献
3.
H. Rager 《Physics and Chemistry of Minerals》1977,1(4):371-378
The electron spin resonance (ESR) spectrum of Cr3+ in a synthetic single crystal of forsterite doped with Cr2O3 was studied at room temperature in the X-band frequency range. The dependence of the observed spectra on the crystal orientation with respect to the applied magnetic field was investigated. The ESR spectra are described by the spin Hamiltonian \(H = \beta HgS + D(S_Z^{\text{2}} - {\text{1/3}}S{\text{(}}S{\text{ + 1)) + }}E{\text{(}}S_x^{\text{2}} - S_y^{\text{2}} {\text{)}}\) with S=3/2. The spin resonance reveals that the chromium ions are located at both the M1 and M2 positions. Other possible substitutional or interstitial Cr3+ positions may be possible, but were not observed. The site occupancy numbers of Cr3+ at M1 and M2 are roughly 1.2×10?4 and 0.8×10?4, respectively, assuming that chromium is oxidized completely. The preference of the chromium ions for M1 was interpreted qualitatively in terms of crystal field criteria. The rhombic and axial spin Hamiltonian parameters, D and E, and the directions of the magnetic axes obtained for M1 and M2 are consistent with the respective oxygen coordination polyhedra. 相似文献
4.
Bruno Reynard 《Physics and Chemistry of Minerals》1991,18(1):19-25
New polarized infrared reflectance spectra of pure synthetic forsterite and natural Fo86-olivine have been recorded from 5000 to 100cm-1. Out of the 35 expected infrared active modes, 33 have been observed (8 B1u, 12 B2u, 13 B3u). The observed frequency shift from pure forsterite to Fo86-olivine is consistent with the higher mass of the substituted iron. The substitution of only 14% of iron also reduces the overal far-infrared reflectivity of olivine as compared to pure forsterite. Several discrepancies associated with previous studies of forsterite are explained by our investigation. We suggest that some of the previous investigations were complicated by polarization mixing. 相似文献
5.
Michele Catti 《Physics and Chemistry of Minerals》1989,16(6):582-590
The method of crystal static deformation, including inner strain effects, was applied to calculate the structure configuration
and the elastic constants of forsterite under anisotropic and isotropic pressure. A Born type interatomic potential is used,
with optimized atomic charges and repulsive radii; SiO4 tetrahedra are approximated as rigid units. Computations were carried out in the range 1–8 GPa, with steps of 1 GPa, for
the three uniaxial stresses τ1, τ2, τ3 and for pressure p. By interpolation of results, interatomic distances and elastic tensor components are shown to depend quadratically on stress.
A non-linear behaviour generally appears above 4 GPa; the importance of inner strain and non-linear effects is analyzed. Mg-O
bond lengths and O-O edges of coordination polyhedra respond differently to anisotropic and to isotropic stresses, according
to the topological features of the structure. Elastic and structural results for hydrostatic pressure are compared to experimental
literature data, discussing the range of validity of the rigid body approximation for SiO4 groups. 相似文献
6.
Polarized optical absorption measurements were carried out on three single crystals of Mg2SiO4 (forsterite), differently doped with Cr. Two crystals containing average 0.013 and 0.027 weight% Cr, respectively, were pulled from the melt in air, whereas one crystal containing average 0.08 weight% Cr was pulled from the melt in an argon atmosphere. The absorption spectra of the three crystals agree with each other although the intensity of single absorption bands varies significantly. In all -polarized patterns a sharp absorption line around 18000cm-1 (550 nm) appears. Conjectures are presented to assign this line to the lasing center in Cr doped forsterite which very likely exists as Cr4+ at the fourfold coordinated Si site. 相似文献
7.
Elastic moduli of forsterite were measured between 300 and 1,200 K (? 1.6 times the Debye temperature) by the Rectangular Parallelepiped Resonance method. All the moduli decrease regularly with temperature. A summary of the results is as follows: