首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Information on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from less than 100 m near the coasts to more than 500 m in the highlands. Ground ice is present as rock glaciers, as ice-cored moraines, buried glacial ice, and in pingos and ice wedges in major valleys. Engineering problems of thaw-settlement and frost-heave are described, and the implications for road design and construction in Svalbard permafrost areas are discussed.  相似文献   

2.
Human-induced climatic warming will have major impacts on permafrost, which presently underlies half of Canada's land mass. The adaptation of the northern environment and its physical processes to the altered climate may be contemporaneous or may lag behind climatic change. The extent of permafrost will diminish, accompanied by modifications of the land surface through thermokarst or mass wasting. Streamflow regimes, sediment transport, coastal flooding and erosion will be affected. The magnitude of most components of the water balance will be altered. More research is needed to understand how the permafrost environment behaves during the transient phase, and the problem of permafrost adaptation should be addressed holistically. [Key words: climatic change, frozen ground, ground ice, hydrology, permafrost, periglacial geomorphology, water balance.]  相似文献   

3.
Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat–sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.  相似文献   

4.
The complete life cycle of a permafrost mound is reconstructed from its growth until its degradation. The study site is a lithalsa, which is the subject of a long-term monitoring that includes geocryological observations, measurements of permafrost properties on cores, ground temperature measurements, and observations of landform changes. The landform likely grew as a palsa under cold climatic conditions in the past. The peat cover was subsequently eroded. Early stages of degradation are witnessed since 2003 as a new thermokarst pond is starting to form though mound collapse. Settlement of the structure has been observed, and a rim ridge has begun to form. Ultimately, the lithalsa shall disappear and be replaced by a circular thermokarst pond surrounded by a rampart, similar to many other ones in the study area. The monitoring of the thermal regime of the lithalsa illustrates the pattern of internal warming and points to the causes of its degradation.  相似文献   

5.
Compared to climate, land use change is expected to comprise a more important component of global change in the coming decades. However, climate is anticipated to supass land use as a factor later in the next century, particularly in the Arctic. Discussed here are the implications of land use and climate change on the Yamal peninsula of north-west Siberia, homeland of the Yamal Nenets. Since the discovery of super-giant natural gas fields in the 1960s, extensive exploration has resulted in direct withdrawal of large areas for infrastructure development and associated disturbance regimes have led to cumulative impacts on thousands of additional hectares of land. The land withdrawals have pushed a relatively consistent or increasing number of reindeer onto progressively smaller parcels of pasture. This has led to excessive grazing and trampling of lichens, bryophytes and shrubs and, in many areas, erosion of sandy soils via deflation. The low Arctic tundra lies entirely within the continuous permafrost zone and ice-rich substrates are widespread. One implication of this is that both anthropogenic and zoogenic distubance regimes may easily initiate thermokarst and aeolian rosion, leading to significant further losses of pastures. Even without industrial distubance, a slight change of the climate would result in massive thermokarst erosion. This would have negative consequences equal to or greater than the mechanical distubances described above. The synergistic effects of land use coupled with climate, change therefore have profound implication for the ecosystems of Yamal, as well as the future of the Nenets culture, society and economy.  相似文献   

6.
Richards Island, Northwest Territories, Canada, is characterized by thermokarst lakes which record Holocene limnological change. This study is the first report of thecamoebian assemblages and continuous annual lake water temperatures from these Arctic lakes. Ecological environments on Richards Island are influenced by a climatic gradient resulting from the contrasting influences of the cold Beaufort Sea to the north and the warm waters of the Mackenzie Delta to the east and west. This climatic gradient in turn influences modern thecamoebian assemblages, and is an indication of the complexity involved in interpreting past conditions from core material in this area.Population abundance and species diversity of thecamoebian assemblages on Richards Island are not significantly different from those reported from temperate and semi-tropical latitudes. However, certain assemblage characteristics, such as large and coarse agglutinated tests, dominance of assemblages by one or two species and low morphological variation are interpreted to be diagnostic of Arctic conditions. Thecamoebian assemblages in core material from the area indicate that the local paleolimnological conditions may have changed within the last 3 ka, and this is unrecorded in previously reported pollen data.Paleoenvironmental interpretations in a permafrost landscape have to take into account morphological instability of thermokarst lakes, which can be the cause of paleolimnological and consequently faunal change. In this area ecosystem development is clearly related to geomorphology and local climatic effects and is not exclusively controlled by regional climate change.  相似文献   

7.
黄河源区冻土分布制图及其热稳定性特征模拟   总被引:5,自引:0,他引:5  
以黄河源区多年冻土分布现状和热力特征为研究目标,通过野外调查及实测数据,分析了黄河源区不同地形地貌、不同地表覆盖条件下的冻土形成、分布特征和以地温为基础的热学特征,探讨了不同尺度因素对多年冻土分布的影响。结果表明,在高程低于4 300 m的平原区,多年冻土多不发育;在高于4 350 m的山区,局地地形对多年冻土的形成与分布作用显著。除阳坡地形外,多年冻土均比较发育;介于4 300~4 350 m的低山丘陵和平原区,局地地形、地表植被、土壤湿度等因素共同决定着多年冻土的形成和分布格局。以年均地温指标为基础,构建了以纬度、经度和高程为自变量的回归模型,并对阳坡地形进行微调和校正。结果表明,以0oC作为划分季节冻土和多年冻土的标准和界限,多年冻土面积2.5×104km2,约占整个源区面积的85.1%;季节冻土面积0.3×104km2,约占整个源区面积的9.7%。进一步以0.5oC或1.0oC为分类间隔绘制了黄河源区多年冻土热稳定性空间分布图。  相似文献   

8.
Permafrost thickness under identical climates in cold regions can vary significantly because it is severely affected by climate change, topography, soil physical and thermal properties, and geothermal conditions. This study numerically in- vestigates the response of ground thermal regime and talik development processes to permafrost with different thicknesses under a thermokarst lake on the Qinghai-Tibet Plateau. On the basis of observed data and information from a representative monitored lake in the Beiluhe Basin, we used a heat transfer model with phase change under a cylindrical coordinate system to conduct three simulation cases with permafrost thicknesses of 45 m, 60 m, and 75 m, respectively. The simulated results indicate that increases in permafrost thickness not only strongly retarded the open talik formation time, but also delayed the permafrost lateral thaw process after the formation of open talik. Increasing the permafrost thickness by 33.3% and 66.7% led to open talik formation time increases of 83.66% and 207.43%, respectively, and resulted in increases in the lateral thaw duration of permafrost under the modeled thermokarst lake by 28.86% and 46.54%, respectively, after the formation of the open taliks.  相似文献   

9.
Landsat series multispectral remote sensing imagery has gained increasing attention in providing solutions to environmental problems such as land degradation which exacerbate soil erosion and landslide disasters in the case of rainfall events. Multispectral data has facilitated the mapping of soils, land-cover and structural geology, all of which are factors affecting landslide occurrence. The main aim of this research was to develop a methodology to visualize and map past landslides as well as identify land degradation effects through soil erosion and land-use using remote sensing techniques in the central region of Kenya. The study area has rugged terrain and rainfall has been the main source of landslide trigger. The methodology comprised visualizing landslide scars using a False Colour Composite (FCC) and mapping soil erodibility using FCC components applying expert based classification. The components of the FCC were: the first independent component (IC1), Principal Component (PC) with most geological information, and a Normalised Difference Index (NDI) involving Landsat TM/ETM+ band 7 and 3.The FCC components formed the inputs for knowledge-based classification with the following 13 classes: runoff, extreme erosions, other erosions, landslide areas, highly erodible, stable, exposed volcanic rocks, agriculture, green forest, new forest regrowth areas, clear, turbid and salty water. Validation of the mapped landslide areas with field GPS locations of landslide affected areas showed that 66% of the points coincided well with landslide areas mapped in the year 2000. The classification maps showed landslide areas on the steep ridge faces, other erosions in agricultural areas, highly erodible zones being already weathered rocks, while runoff were mainly fluvial deposits. Thus, landuse and rainfall processes play a major role in inducing landslides in the study area.  相似文献   

10.
Four different sites in the highlands of central Iceland have been investigated for permafrost occurrence using two‐dimensional resistivity imaging. The results of the surveys indicate the presence of shallow permafrost of low to medium resistivity. The distribution pattern is spatially heterogeneous which is consistent with permafrost at the fringe of seasonal frost. These sites are likely to react rapidly to changes of the environmental boundary conditions, therefore future research should include monitoring for detecting the early impact of climate change on permafrost degradation. The extent to which periglacial morphodynamics and sediment fluxes are influenced by permafrost and/or seasonal frost and potential permafrost degradation is hard to determine. Hence, long‐term monitoring approaches for both permafrost and sediment dynamics are essential.  相似文献   

11.
Hazard interactions in glacial and periglacial environments are of crucial importance due to their potential for causing major catastrophes. Nevertheless, glacial and periglacial hazards have usually been modeled separately to date. In this study, we therefore propose a methodological strategy for modeling and assessing glacial and periglacial hazard interactions on a regional scale, including ice avalanches, lake outbursts and periglacial debris flows. Due to climate‐related rapid changes in glacial and periglacial areas, methods which incorporate monitoring capacities are needed. Hence, the methods presented here are based on remote sensing data, which are particularly powerful for monitoring tasks, and GIS modeling. For ice avalanche and lake‐outburst hazard detection and modeling, we applied recently published methods based on Landsat‐TM imagery, terrain modeling and flow routing. For detection of potential debris‐flow initiation zones in steep debris reservoirs, we present a novel method based on image processing of IKONOS data and terrain modeling, followed by flow modeling. Using this method, we achieve the synthesis of the individual process modeling in order to assess the potential interactions. The modeling is applied to a study region in the central Swiss Alps. The results show that systematic modeling based on remote sensing and GIS is suitable for first‐order assessment of glacial and periglacial hazard interactions as well as assessments of possible consequences, including impacts on traffic routes and other infrastructure. Based on this, critical cases can be detected and analyzed by subsequent detailed studies.  相似文献   

12.
Arctic tundra surfaces are dominated by a variety of patterned ground forms. Whereas a large number of studies have described morphology, structure and processes of patterned ground, few have monitored detailed patterned ground dynamics and subsurface environments continuously. We applied electrical resistivity tomography (ERT) to understand near‐surface conditions of two types of patterned ground, ice‐wedge polygons and mudboils in Svalbard, where periglacial processes associated with permafrost are intensively monitored. Automated monitoring shows surface movement characterized by annual cycles of frost heave and thaw settlement, the amounts and rates of which are influenced by the intensity of ice segregation. A time series of ERT shows (1) a distinct resistivity boundary delimiting the active‐layer depth, (2) seasonal variation in resistivity controlled by thermo‐hydrological dynamics and (3) spatial variation in resistivity reflecting desiccation in summer and intensive ice segregation in winter. These results demonstrate ERT as a useful complementary technique for monitoring active‐layer depths and near‐surface hydrological conditions at periglacial patterned ground sites, where automated soil thermal and moisture measurements are limited.  相似文献   

13.
The degradation of permafrost stability in China over the past 30 years is evaluated using a new, high-resolution near-surface air temperature reanalysis dataset. Results show that the permafrost extent clearly decreased by 22% from 1980 to 2010, that is, a loss of 12.684;104 km2. The degradation occurred not only in the transition regions between permafrost and seasonally frozen ground, but also and more importantly, in the interior of the permafrost regions. The degradation in the interior of permafrost regions accounted for 87% of the total degraded areas. The degradation occurred mainly during the 1980s to 1990s in the northeast permafrost area and the Qilian Mountains, and during the 1990s to 2000s in most areas of the Qinghai-Tibet Plateau (QTP). This degradation will have systemic impacts on engineered infrastructures in permafrost regions, the water balance, and the global carbon budget. A more robust physical model should be used to evaluate the permafrost thermal stability at finer resolution in the future.  相似文献   

14.
黄河源区多年冻土空间分布变化特征数值模拟   总被引:3,自引:1,他引:2  
马帅  盛煜  曹伟  吴吉春  胡晓莹  王生廷 《地理学报》2017,72(9):1621-1633
基于IPCC第五次评估报告预估的气温变化情景,采用数值模拟的方法对黄河源区典型冻土类型开展模拟,推算过去及预测未来黄河源区冻土分布空间变化过程和发展趋势。结果表明:1972-2012年源区多年冻土只有少部分发生退化,退化的冻土面积为833 km2,季节冻土主要集中在源区东南部的热曲谷地、小野马岭以及两湖流域南部的汤岔玛地带;RCP 2.6、RCP 6.0、RCP 8.5情景下,2050年多年冻土退化为季节冻土的面积差别不大,分别为2224 km2、2347 km2、2559 km2,占源区面积的7.5%、7.9%、8.6%;勒那曲、多曲、白马曲零星出现季节冻土,野牛沟、野马滩以及鄂陵湖东部的玛多四湖所在黄河低谷大片为季节冻土;2100年多年冻土退化为季节冻土的面积分别为5636 km2、9769 km2、15548 km2,占源区面积的19%、32.9%、52.3%;星宿海、尕玛勒滩、多格茸的多年冻土发生退化,低温冻土变为高温冻土,各类年平均地温出现了不同程度的升高。到2100年,RCP 2.6情景下源区多年冻土全部退化为季节冻土主要发生在目前年平均地温高于-0.15 oC的区域,而-0.15~-0.44 oC的区域部分发生退化;RCP 6.0、RCP 8.5情景下目前年平均地温分别为高于-0.21 oC以及-0.38o C的区域多年冻土全部发生退化,而-0.21~-0.69 oC以及-0.38~-0.88 oC的区域部分发生退化。  相似文献   

15.
试论青藏高原多年冻土类型的划分   总被引:5,自引:1,他引:5  
本文采用综合分析与主导因素相结合的原则,以干燥度作为主要指标并参考年降水量,年平均相对湿度及气温较差等,结合地形因素将青藏庙的多年冻土划分为:湿润,亚湿润,半干旱,干旱和极干旱5种类型,并对各类型代表性和冻土地区进行分别论述。  相似文献   

16.
Permafrost and periglacial geomorphology are absent from the science curriculum in most secondary schools in the United States. This is an unfortunate situation given the recent increases in development and environmental concerns in northern latitudes and high-mountain areas, and the interesting examples of basic scientific principles found in the history of research on periglacial geomorphology and permafrost. In 1997 and 1998, a University of Delaware research group studying permafrost and periglacial geomorphology in northern Alaska participated in the National Science Foundation's (NSF) Teachers Experiencing the Antarctic and Arctic (TEA) Program. In each of these years, a high school teacher and a student traveled as part of the research team to the North Slope of Alaska. They learned about the landscape, collected active-layer thickness and temperature measurements, and assisted in data analysis. Results from studies of active-layer thickness variability and ground temperature contributed to a series of long-term observations and international research on the impacts of global climate change. Since their expeditions, the teachers have shared their experiences with their classrooms and communities in several ways, including public lectures and the Internet. Classroom activities are available to the public through the TEA web site (http://tea.rice.edu). This experience may heighten public awareness of permafrost and contribute to it becoming a useful part of the secondary curriculum.  相似文献   

17.
《Polar Science》2014,8(2):96-113
Understanding geocryological characteristics of frozen sediment, such as cryostratigraphy, ice content, and stable isotope ratio of ground ice, is essential to predicting consequences of projected permafrost thaw in response to global warming. These characteristics determine thermokarst extent and controls hydrological regime—and hence vegetation growth—especially in areas of high latitude; it also yields knowledge about the history of changes in the hydrological regime. To obtain these fundamental data, we sampled and analyzed unfrozen and frozen surficial sediments from 18 boreholes down to 1–2.3 m depth at five sites near Chokurdakh, Russia. Profiles of volumetric ice content in upper permafrost excluding wedge ice volume showed large variation, ranging from 40 to 96%, with an average of 75%. This large amount of ground ice was in the form of ice lenses or veins forming well-developed cryostructures, mainly due to freezing of frost-susceptible sediment under water-saturated condition. Our analysis of geocryological characteristics in frozen ground including ice content, cryostratigraphy, soil mechanical characteristics, organic matter content and components, and water stable isotope ratio provided information to reconstruct terrestrial paleo-environments and to estimate the influence of recent maximum thaw depth, microtopography, and flooding upon permafrost development in permafrost regions of NE Russia.  相似文献   

18.
多年冻土地区工程建设生态环境影响研究评述   总被引:3,自引:0,他引:3  
多年冻土地区工程建设的研究在国际上开展很早,而关于工程建设项目对区域生态环境影响的研究则相对滞后。在对生态环境要素所受影响角度的考察中,相关研究集中于工程建设项目对冻土层以及多年冻土地区植被、湿地、土地荒漠化、野生动物、自然保护区的影响上;在对生态环境影响预测和评价方法角度的考察中,相关研究集中于冻土层和多年冻土地区水土流失的影响预测和评价上。从既有的研究成果来看,多年冻土地区工程建设生态环境影响研究应向体系化、定量化和全面化发展,具体的工作包括生态环境影响评价指标体系的建立和综合性生态环境影响评价方法的制定等。  相似文献   

19.
Chironomid, pollen, and rhizopod records from a permafrost sequence at Bol’shoy Lyakhovsky Island (New Siberian Archipelago) document the development of a thermokarst palaeo-lake and environmental conditions in the region during the last Interglacial (MIS 5e). Open Poaceae and Artemisia associations dominated vegetation at the beginning of the interglacial period. Rare shrub thickets (Salix, Betula nana, Alnus fruticosa) grew in more protected and wetter places as well. Saalian ice wedges started to melt during this time, resulting in the formation of an initial thermokarst water body. The high percentage of semi-aquatic chironomids suggests that a peatland-pool initially existed at the site. A distinct decrease in semi-aquatic chironomid taxa and an increase in lacustrine ones point to a gradual pooling of water in the basin, which could in turn induce thermokarst and create a permanent pond during the subsequent period. The highest relative abundance of Chironomus and Procladius reflects unfrozen water remaining under the ice throughout the ice-covered period during the later stage of palaeo-lake development. The chironomid record points to three successive stages during the history of the lake: (1) a peatland pool; (2) a pond (i.e., shallower than the maximum ice-cover thickness); and (3) a shallow lake (i.e., deeper than the maximum ice-cover thickness). The trend of palaeo-lake development indicates that intensive thermokarst processes occurred in the region during the last Interglacial. Shrub tundra communities with Alnus fruticosa and Betula nana dominated the vegetation during the interglacial optimum. The climate was moister and warmer than present. The results of this study suggest that quantitative chironomid-based temperature reconstructions from Arctic thermokarst ponds/lakes may be problematic due to other key environmental factors, such as prolonged periods of winter anoxia and local hydrological/geomorphological processes, controlling the chironomid assemblages.  相似文献   

20.
Geomorphological diversity is part of geodiversity. Study and evaluation of geodiversity, including geomorphological diversity, is often conducted in uplands and mountains, despite the fact that lowland areas are of equal importance. This paper evaluates geomorphological diversity in a small area of the Polish Lowland, using a variety of methods that have been applied in recent times for evaluating geodiversity, and presents the results on maps. By comparing these maps and analyzing the correlation coefficients of the results obtained, it was possible to identify the two methods that were best suited to indicating areas with the greatest geomorphological diversity in the lowlands. These two methods are least affected by the choice of elementary fields and data classification methods applied. The study identified the two areas with the greatest relief diversity and showed that they distinctly differ from one another. They demonstrate the major influence of processes, not only on the topographic parameters and landform types, but above all on identifying and defining total geomorphological diversity. These methods, which can be used to identify the areas with the greatest total geomorphological diversity, could readily be used in applied studies relating to abiotic ecosystem services and landscape management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号