首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure.  相似文献   

2.
This paper aims to extend the consecutive modal pushover (CMP) procedure for estimating the seismic demands of two-way unsymmetric-plan tall buildings subjected to bi-directional seismic ground motions taking the effects of higher modes and torsion into account. Multi-stage and single-stage pushover analyses are carried out in both X and Y directions. Inelastic seismic responses obtained by multi-stage and single-stage pushover analyses for X and Y directions are combined using the SRSS combination scheme. The final seismic responses are determined by enveloping the combined results of multi-stage and single-stage pushover analyses. To evaluate the accuracy of the proposed procedure, it is applied to two-way unsymmetric-plan tall buildings which include torsionally stiff and torsionally flexible systems. The results derived from the CMP procedure are compared with those from nonlinear response history analysis (NL-RHA), as a benchmark solution. Moreover, the advantages of the proposed procedure are demonstrated by comparing the results derived from the CMP to those from pushover analysis with uniform and fundamental effective mode distributions. The proposed procedure is able to accurately predict amplification or de-amplification of the seismic displacements at the flexible and stiff edges of the two-way unsymmetric-plan tall buildings by considering the effects of higher modes and torsion. The extended CMP procedure can accurately estimate the peak inelastic responses, such as displacements and storey drifts. The CMP procedure features a higher potential in estimating plastic hinge rotations at both flexible and stiff sides of unsymmetric-plan tall buildings under bi-directional seismic excitation when compared to the uniform and fundamental effective mode force distributions.  相似文献   

3.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The accuracy of the three‐dimensional modal pushover analysis (MPA) procedure in estimating seismic demands for unsymmetric‐plan buildings due to two horizontal components of ground motion, simultaneously, is evaluated. Eight low‐and medium‐rise structures were considered. Four intended to represent older buildings were designed according to the 1985 Uniform Building Code, whereas four other designs intended to represent newer buildings were based on the 2006 International Building Code. The median seismic demands for these buildings to 39 two‐component ground motions, scaled to two intensity levels, were computed by MPA and nonlinear response history analysis (RHA), and then compared. Even for these ground motions that deform the buildings significantly into the inelastic range, MPA offers sufficient degree of accuracy. It is demonstrated that PMPA, a variant of the MPA procedure, for nonlinear systems is almost as accurate as the well‐known standard response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative to nonlinear RHA, whereby seismic demands can be estimated directly from the (elastic) design spectrum. In contrast, the nonlinear static procedure specified in the ASCE/SEI 41‐06 Standard is demonstrated to grossly underestimate seismic demands for some of the unsymmetric‐plan buildings considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A pushover procedure with a load pattern based on the height-wise distribution of the combined modal story shear and torsional moment is proposed to estimate the seismic response of 3D asymmetric-plan building frames. Contribution of the higher modes and torsional response of asymmetric-plan buildings are incorporated into the proposed load pattern. The proposed pushover method is a single-run procedure, which enables tracing the nonlinear response of the structure during the analysis and averts the elusiveness of conducting multiple pushover analyses. The proposed method has been used to estimate the response of two moment-resisting building frames with 9 and 20 stories. The obtained results indicate the appropriate accuracy and efficiency of the proposed procedure in estimating the trend of the drift profiles of the structures resulted from nonlinear time history analyses.  相似文献   

6.
A new modal pushover procedure is proposed for seismic assessment of asymmetric-plan buildings under bi-directional ground motions. Although the proposed procedure is a multi-mode procedure and the effects of the higher and torsional modes are considered, the simplicity of the pushover procedure is kept and the method requires only a single-run pushover analysis for each direction of excitation. The effects of the frequency content of a specific ground motion and the interaction between modes at each direction are all considered in the single-run pushover analysis. For each direction, the load pattern is derived from the combined modal story shear and torque profiles. The pushover analysis is conducted independently for each direction of motion (x and y), and then the responses due to excitation in each direction are combined using SRSS (Square Roots of Sum of Squares) combination rule. Accuracy of the proposed procedure is evaluated through two low- and medium-rise buildings with 10% two-way eccentricity under different pairs of ground motions. The results show promising accuracy for the proposed method in predicting the peak seismic responses of the sample buildings.  相似文献   

7.
An Erratum has been published for this article in Earthquake Engng. Struct. Dyn. 2004; 33:1429. Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the conceptual simplicity of current procedures with invariant force distribution, now common in structural engineering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric‐plan buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion of the effective earthquake forces is determined by non‐linear static analysis using the inertia force distribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each floor level. These ‘modal’ demands due to the first few terms of the modal expansion are then combined by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The MPA estimates of seismic demand for torsionally‐stiff and torsionally‐flexible unsymmetric systems are shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate for a torsionally‐similarly‐stiff unsymmetric‐plan system and the ground motion considered because (a) elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedure was proposed by Chopra et al. (2001). However, invariable lateral force distributions are still adopted in the MPA. In this paper, an improved MPA procedure is presented to estimate the seismic demands of structures, considering the redistribution of inertia forces after the structure yields. This improved procedure is verified with numerical examples of 5-, 9- and 22-story buildings. It is concluded that the improved MPA procedure is more accurate than either the POA procedure or MPA procedure. In addition, the proposed procedure avoids a large computational effort by adopting a two-phase lateral force distribution..  相似文献   

9.
This paper proposes a method for the estimation of the seismic energy demands of two-way asymmetric-plan buildings under bi-directional ground excitations. The modal absorbed energies of asymmetric-plan buildings are estimated by using the three-degree-of-freedom (3DOF) modal systems. The 3DOF modal system represents the two roof translations versus the two base shears and the roof rotation versus the base torque relationships of each vibration mode of two-way asymmetric-plan buildings. Not only the total absorbed energy but also the portions of the total absorbed energy contributed from translational and rotational deformations can be respectively estimated. This study verifies the relationship between the signs of modal eccentricities and the trend of uneven distribution of modal absorbed energy on floor-plan edges of asymmetric-plan buildings. The accuracy of the proposed method was verified by analyzing one 3-storey and one 20-storey two-way asymmetric-plan buildings subjected to bi-directional ground motions. The computational efficiency of the proposed method is confirmed by comparing the computation time with that required by using the nonlinear response history analysis.  相似文献   

10.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

11.
In recent years, nonlinear static procedures (NSPs) have gained considerable popularity as an efficient tool in the performance based seismic design practice. This was backed by extensive corroboration studies that have demonstrated its good accuracy in estimating the seismic response of regular structures. Despite the numerous improvements of the original versions of NSPs, their use to assess the seismic response of irregular structures and high-rise buildings is still challenging; they are not able to predict with sufficient accuracy all the complexities associated to the seismic response of this type of structures. Thus, an improved upper-bound (IUB) pushover procedure for seismic assessment of plane frames is presented in this paper, aiming to enhance the accuracy of existing methods in predicting the seismic behaviour of high-rise buildings. The novelty of this proposal is based on the adjustment of the pattern of the lateral load of the upper-bound pushover method applied to tall structures. The accuracy of the procedure is tested using nine, twelve, fifteen and twenty storeys steel buildings. The results of the (IUB) are compared to those of the capacity spectrum method, the modal pushover analysis, the upper bound pushover analysis, the modified upper bound pushover analysis and the non-linear time history analysis (NTHA). In most cases, the proposed procedure shows better results and closer to those obtained by NTHA.  相似文献   

12.
An Erratum has been published for this article in Earthquake Engineering and Structural Dynamics 2003; 32:1795. The recently developed modal pushover analysis (MPA) has been shown to be a significant improvement over the pushover analysis procedures currently used in structural engineering practice. None of the current invariant force distributions accounts for the contribution of higher modes—higher than the fundamental mode—to the response or for redistribution of inertial forces because of structural yielding. By including the contributions of a sufficient number of modes of vibration (generally two to three), the height‐wise distribution of responses estimated by MPA is generally similar to the ‘exact’ results from non‐linear response history analysis (RHA). Although the results of the previous research were extremely promising, only a few buildings were evaluated. The results presented below evaluate the accuracy of MPA for a wide range of buildings and ground motion ensembles. The selected structures are idealized frames of six different heights: 3, 6, 9, 12, 15, and 18 stories and five strength levels corresponding to SDF‐system ductility factor of 1, 1.5, 2, 4, and 6; each frame is analysed for 20 ground motions. Comparing the median values of storey‐drift demands determined by MPA to those obtained from non‐linear RHA shows that the MPA predicts reasonably well the changing height‐wise variation of demand with building height and SDF‐system ductility factor. Median and dispersion values of the ratios of storey‐drift demands determined by MPA and non‐linear‐RHA procedures were computed to measure the bias and dispersion of MPA estimates with the following results: (1) the bias and dispersion in the MPA procedure tend to increase for longer‐period frames and larger SDF‐system ductility factors (although these trends are not perfect); (2) the bias and dispersion in MPA estimates of seismic demands for inelastic frames are usually larger than for elastic systems; (3) the well‐known response spectrum analysis (RSA), which is equivalent to the MPA for elastic systems, consistently underestimates the response of elastic structures, e.g. up to 18% in the upper‐storey drifts of 18‐storey frames. Finally, the MPA procedure is simplified to facilitate its implementation in engineering practice—where the earthquake hazard is usually defined in terms of a median (or some other percentile) design spectrum for elastic systems—and the accuracy of this simplified procedure is documented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this study a new method for nonlinear static analysis based on the relative displacements of stories is proposed that is able to be implemented in a single stage analysis and considers the effects of an arbitrary number of higher modes. The method is called the extended drift pushover analysis procedure (EDPA). To define the lateral load pattern, values of the relative displacements of stories are calculated using the elastic modal analysis and the modal combination factors introduced. For determining the combination factors, six different approaches are examined. Buildings evaluated in this study consist of four special steel moment-resisting frames with 10–30 stories. Responses including relative displacements of stories, story shear forces and rotation of plastic hinges in each story are calculated using the proposed approaches in addition to modal pushover analysis and nonlinear dynamic time history analyses. The nonlinear dynamic analysis is implemented using ten consistent earthquake records that have been scaled with regard to ASCE7-10. Distribution of response errors of story shears and plastic hinge rotations show that a major part of error corresponds to the second half of the buildings studied. Thus, the mentioned responses are corrected systematically. The final results of this study show that implementing the EDPA procedure using the third approach of this research is able to effectively overcome the limitations of both the traditional and the modal pushover analyses methods and predict the seismic demands of tall buildings with good accuracy.  相似文献   

14.
本文主要研究如何通过合理设计来提高高层钢结构的整体抗震能力。首先,给出了高层钢结构的非线性计算模型;其次,建立了高层钢结构在强地震动作用下的倒塌失效模式的极限状态判别准则;然后,通过模态pushover分析,研究了高层钢结构在水平地震作用下的损伤规律;最后,重点研究了高层钢结构的整体抗震能力的提高方法,提出了均匀损伤的设计方法,该方法通过消除结构的薄弱层,来达到提高高层钢结构的整体抗震能力的目的。通过对两栋20层的高层钢框架结构进行极限时程分析和极限pushover分析,验证了文中提出的均匀损伤的设计方法的可行性。本文的工作可为高层钢结构的抗地震倒塌设计提供参考依据。  相似文献   

15.
Nonlinear static (pushover) analysis has become a popular tool during the last decade for the seismic assessment of buildings. Nevertheless, its main advantage of lower computational cost compared to nonlinear dynamic time‐history analysis (THA) is counter‐balanced by its inherent restriction to structures wherein the fundamental mode dominates the response. Extension of the pushover approach to consider higher modes effects has attracted attention, but such work has hitherto focused mainly on buildings, while corresponding work on bridges has been very limited. Hence, the aim of this study is to adapt the modal pushover analysis procedure for the assessment of bridges, and investigate its applicability in the case of an existing, long and curved, bridge, designed according to current seismic codes; this bridge is assessed using three nonlinear static analysis methods, as well as THA. Comparative evaluation of the calculated response of the bridge illustrates the applicability and potential of the modal pushover method for bridges, and quantifies its relative accuracy compared to that obtained through other inelastic methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The drift pushover analysis method for tall and regular buildings is extended in this paper to the third dimension. The focus of study is on the structures with important torsional response. For this purpose, 10, 15, 20 and 30-story steel moment frame buildings having unsymmetrical plans with 5–30% eccentricity ratios are studied. For evaluation of accuracy, nonlinear dynamic response of the buildings is determined under a consistent suit of earthquake ground motions. The maxima of the story drifts and shears and cumulative plastic hinge rotations of stories are calculated under the ground motions and their averages along with those of the modal pushover procedure are compared with the results of the presented method. The comparative analysis establishes the good accuracy of the three dimensional drift pushover method.  相似文献   

17.
The extended N2 method taking into account higher mode effects in elevation   总被引:1,自引:0,他引:1  
The N2 method has been extended in order to take into account higher mode effects in elevation. The extension is based on the assumption that the structure remains in the elastic range when vibrating in higher modes. The seismic demand in terms of displacements and storey drifts can be obtained by enveloping the results of basic pushover analysis and the results of standard elastic modal analysis. The approach is consistent with the extended N2 method used for plan‐asymmetric buildings. The proposed procedure was applied to three variants of three steel frame buildings used in the SAC project. The structural response was investigated for two sets of ground motions. Different ground motion intensities were used in order to investigate the influence of the magnitude of plastic deformations. The N2 results were compared with the results of nonlinear response‐history analysis, two other pushover‐based methods (modal pushover analysis (MPA) and modified MPA (MMPA)), and pushover analysis without consideration of higher modes. It was found that a considerable influence of higher modes on storey drifts is present at the upper part of medium‐and high‐rise structures. This effect is the largest in the case of elastic behaviour and decreases with ground motion intensity. The higher mode effects also depend on the spectral shape. The approximate methods (extended N2, MPA and MMPA) are able to provide fair estimates of response in the case of the test examples. Accuracy decreases with the height of the building, and with the intensity of ground motion. The N2 results are generally conservative. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
模态pushover分析方法的研究和改进   总被引:11,自引:0,他引:11  
鉴于传统pushover方法不能考虑结构高阶振型的贡献,从而难以应用到高层结构中,有学者提出采用考虑多阶振型组合作用的模态pushover分析方法。本文通过考虑结构屈服后地震作用发生变化这一特性,对此方法进行了改进并通过算例进行了验证。结果表明本文改进的方法有很好的精度。  相似文献   

19.
Incremental dynamic analysis (IDA)—a procedure developed for accurate estimation of seismic demand and capacity of structures—requires non‐linear response history analysis of the structure for an ensemble of ground motions, each scaled to many intensity levels, selected to cover the entire range of structural response—all the way from elastic behaviour to global dynamic instability. Recognizing that IDA of practical structures is computationally extremely demanding, an approximate procedure based on the modal pushover analysis procedure is developed. Presented are the IDA curves and limit state capacities for the SAC‐Los Angeles 3‐, 9‐, and 20‐storey buildings computed by the exact and approximate procedures for an ensemble of 20 ground motions. These results demonstrate that the MPA‐based approximate procedure reduces the computational effort by a factor of 30 (for the 9‐storey building), at the same time providing results to a useful degree of accuracy over the entire range of responses—all the way from elastic behaviour to global dynamic instability—provided a proper hysteretic model is selected for modal SDF systems. The accuracy of the approximate procedure does not deteriorate for 9‐ and 20‐storey buildings, although their dynamics is more complex, involving several ‘modes’ of vibration. For all three buildings, the accuracy of the MPA‐based approximate procedure is also satisfactory for estimating the structural capacities for the limit states of immediate occupancy, collapse prevention, and global dynamic instability. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The paper reviews the uncoupled modal response history analysis (UMRHA) and modal pushover analysis (MPA) procedure in the analysis of asymmetric structures. From the pushover curves in ADRS format, showing the relationships of base shear versus roof translation and base torque versus roof rotation, a bifurcating characteristic of the pushover curves of an asymmetric structure is observed. A two‐degree‐of‐freedom (2DOF) modal stick is constructed using lump mass eccentrically placed at the end of beam which is connected with the column by a rotational spring. By converting the equation of motion of a whole structure into 2DOF modal equations, all of the elastic properties in the 2DOF modal sticks can be determined accurately. A mathematical proof is carried out to demonstrate that the 2DOF modal stick is consistent with the single‐degree‐of‐freedom (SDOF) modal stick at elastic state. The bifurcating characteristic of modal pushover curves and the interaction of modal translation and rotation can be considered rationally by this 2DOF modal stick. In order to verify the effectiveness of this proposed 2DOF modal stick, a two‐storey asymmetric building structure was analysed by the UMRHA procedure incorporating this novel 2DOF modal sticks (2DMPA) and conventional SDOF modal sticks (SDMPA), respectively. The analytical results are compared with those obtained by nonlinear response history analysis (RHA). It is illustrated that the accuracy of the rotational response histories obtained by 2DMPA is much better than those obtained by SDMPA. Consequently, the estimations of translational response histories on flexible side (FS) and stiff side (SS) of the building structure are also improved. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号