首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用Penzien模型及Hertzdamp碰撞单元,建立了相邻结构考虑PSSI的碰撞模型,推导了其碰撞动力方程,并对相邻结构进行了碰撞模拟和参数分析.研究表明:虽然PSSI对结构本身的地震响应影响并不大,但对相邻结构的碰撞响应影响明显.同时,在一定范围内,防震缝宽度、碰撞刚度、结构周期比、桩的截面惯性矩以及土的剪切波速...  相似文献   

2.
Earthquake‐induced structural pounding frequently causes serious damage to buildings, particularly at the expansion joint (hereafter, EXPJ) between adjacent buildings. Because the EXPJ width in existing reinforced concrete buildings is usually very small, typically about 5 cm for school buildings in Japan, collision avoidance cannot be achieved by seismic retrofitting. This paper presents an experimental investigation into an effective method for reducing severe structural damage due to pounding at the EXPJ between narrowly separated buildings. The method involves inserting a shock‐absorbing material such as rubber into the EXPJ gap. The efficiency of the proposed method is evaluated by laboratory shaking tests using two model buildings. Furthermore, a lumped mass model is used to carry out a collision analysis in order to numerically investigate the influence of such a shock‐absorbing material. Both the numerical and experimental results confirm the effectiveness of the proposed approach. The validity of the proposed method is also demonstrated by numerical simulation of adjacent 10‐story steel buildings with an EXPJ width of 5 cm. The force, acceleration and velocity produced by earthquake‐induced structural pounding are found to be remarkably mitigated by inserting a soft shock‐absorbing material into the EXPJ gap. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This article deals with sensitivity of the response of pounding buildings with respect to structural and earthquake excitation parameters. A comprehensive sensitivity analysis is carried out by means of Monte Carlo simulations of adjacent single degree of freedom impacting oscillators. This sensitivity analysis, based on Sobol's method, computes sensitivity indexes which provide a consistent measure of the relative importance of parameters such as the dimensionless main excitation frequency, the mass and frequency ratios of the structures, and the coefficient of restitution. Moreover, the influence of nonlinear behavior of the impacting structures is also considered. The consequences of pounding on the structures themselves are analyzed in terms of maximum force and nonlinear demand amplification compared with the case without pounding. As for the influence of pounding on the floor response spectra, the quantity of interest is the maximum impact impulse. The overall conclusions of this analysis are that the frequency ratio is the most important parameter as far as the maximum force and nonlinear demand are concerned. Regarding the maximum impact impulse, the mass and frequency ratios are, in general, the most influential parameters, the mass ratio being predominant for low frequencies of the oscillator of interest.  相似文献   

4.
The problem of the through-soil coupling of structures has puzzled the researchers in the field for a long while, especially regarding the varied performance of identical, adjacent buildings in earthquakes. The phenomenon of structure-soil-structure interaction (SSSI) that has often been overlooked is recently being recognized: The possible effects in urban regions are yet to be thoroughly quantified. In this respect, the goal of this work was to rigorously investigate the interacting effects of adjacent buildings in a two-dimensional setting. Detailed finite element models of 5-, 15-, and 30-story structures, realistically designed, were used in forming building clusters on the viscoelastic half-space. Perfectly matched layers were used to properly define the half-space boundaries. The interaction of the structure and the soil medium because of the presence of spatially varying ground motion on the boundary of excavated region was considered. The effects of the foundation material and the distance between adjacent buildings on the structural behavior of the neighboring buildings were investigated using drift ratios and base shear quantities as the engineering demand parameters of interest. The effects of SSSI, first investigated in the frequency domain, was then quantified in the time domain using suites of appropriate ground motions in accordance with the soil conditions, and the results were compared with the counterpart SSI solution of a single building. The results showed that, for identical low-rise structures, the effects of SSSI were negligible. Yet, neglecting SSSI for neighboring closely spaced high-rise structures or building clusters with a large stiffness contrast was shown to lead to a considerable underestimation of the true seismic demands even compared with solutions obtained using the rigid base assumption.  相似文献   

5.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper the dynamic response of two and three pounding oscillators subjected to pulse‐type excitations is revisited with dimensional analysis. Using Buckingham's Π‐theorem the number of variables that govern the response of the system is reduced by three. When the response is presented in the dimensionless Π‐terms remarkable order emerges. It is shown that regardless of the acceleration level and duration of the pulse all response spectra become self‐similar and follow a single master curve. This is true despite the realization of finite duration contacts with increasing durations as the excitation level increases. All physically realizable contacts (impacts, continuous contacts, and detachments) are captured via a linear complementarity approach. The study confirms the existence of three spectral regions. The response of the most flexible among the two oscillators amplifies in the low range of the frequency spectrum (flexible structures); whereas, the response of the most stiff among the two oscillators amplifies at the upper range of the frequency spectrum (stiff structures). Most importantly, the study shows that pounding structures such as colliding buildings or interacting bridge segments may be most vulnerable for excitations with frequencies very different from their natural eigenfrequencies. Finally, by applying the concept of intermediate asymptotics, the study unveils that the dimensionless response of two pounding oscillators follows a scaling law with respect to the mass ratio, or in mathematical terms, that the response exhibits an incomplete self‐similarity or self‐similarity of the second kind with respect to the mass ratio. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
本文基于虚拟激励法和留数定理推导出毗邻建筑考虑局部场地效应时在平稳随机地震激励下的LQG控制问题的闭合解。利用此闭合解进行场地土参数研究表明,场地土参数对位移和加速度响应的影响是不同的,甚至是相反的。因此对于给定的LQG控制加权阵Q和R,场地土的卓越频率和阻尼比变化对减震效果有显著影响,应予以重视。  相似文献   

8.
The current paper presents an efficient methodology for numerically simulating in three dimensions adjacent buildings that may experience pounding during strong earthquakes. In particular, a new approach to the numerical problem of spatial impact modeling that does not require the ‘a priori’ determination of the contact points is presented, taking also into account the geometry at the vicinity of an impact. In the current study, the buildings are simulated as linear multi‐degree‐of‐freedom‐systems, but the methodology can be easily extended to consider nonlinear behavior as well. A software application has been specifically developed to implement the proposed methodology, using modern object‐oriented design and programming. The developed software is utilized in a simple example, and the computed results are compared with the corresponding analysis results obtained from a commercial general‐purpose software application that uses typical contact elements for the simulation of impacts. A discussion follows on the advantages and capabilities of the proposed methodology and the developed software. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
考虑相邻结构影响的土-结构动力相互作用研究综述   总被引:1,自引:0,他引:1  
对相邻结构动力相互作用(DCI)的研究历史与现状作了回顾和介绍,将其发展过程分为三个阶段,并对各时期发展的主要内容和特点进行了概述,最后对该领域今后的研究趋势作了分析。  相似文献   

10.
The dynamic interaction of adjacent buildings in cities and urban areas through the soil medium is inevitable. This fact has been confirmed by various analytical and numerical studies. However, very little research is available on the physical modelling of the Structure-Soil-Structure Interaction (SSSI) problem and its effect on the dynamics of adjacent structures. In this paper, a series of shaking table tests was conducted at the Earthquake and Large Structures Laboratory (EQUALS) at the University of Bristol to examine the effects of SSSI on the response of a model building when bordered by up to two other model buildings under dynamic excitation. The results indicated that depending on their height, the presence of one or two adjacent building could positively or negatively alter seismic power and peak acceleration responses of a building in comparison to when it is tested in isolation.  相似文献   

11.
The use of collision shear walls (bumper‐type), acting transversely to the side subject to pounding, as a measure to minimize damage of reinforced concrete buildings in contact, is investigated using 5‐story building models. The buildings were designed according to the Greek anti‐seismic and reinforced concrete design codes. Owing to story height differences potential pounding in case of an earthquake will occur between floor slabs, a case specifically chosen because this is when pounding can turn out to be catastrophic. The investigation is carried out using nonlinear dynamic analyses for a real earthquake motion and also a simplified solution for a triangular dynamic force of short duration, comparable to the forces caused by pounding. For such analyses, nonlinear, prismatic beam–column elements are used and the effects of pounding are expressed in terms of changes in rotational ductility factors of the building elements. The local effects of pounding on the collision shear walls are investigated using a detailed nonlinear finite element model of the shear walls and results are expressed in terms of induced stresses. It is found that pounding will cause instantaneous acceleration pulses in the colliding buildings and will somewhat increase ductility demands in the members of the top floor, but all within tolerable limits. At the same time the collision walls will suffer repairable local damage at the points of contact, but will effectively protect both buildings from collapse, which could occur if columns were in the place of the walls. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
两结构高效阻尼控制体系试验研究   总被引:2,自引:0,他引:2  
本文通过模拟地震动振动台试验,研究了两个相邻结构模型的地震响应,结构模型采用一种高效阻尼装置(High Efficient Damper for Multi—Structure System即HEDMS)连接。非线性时程分析与振动台试验结果都证明了该阻尼装置能高效发挥软钢阻尼器的耗能能力,从而显著减轻两结构模型的地震响应。同时,研究还指出了进行阻尼装置设计时应该注意的一些问题。  相似文献   

13.
The effect of collision between adjacent reinforced concrete building frames under multiple earthquakes is investigated in this paper. The four planar frames and the nine different pairs of adjacent reinforced concrete structures of the first companion paper are also examined here, under five real seismic sequences. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised because of lack of time. Various parameters are investigated, such as the maximum horizontal displacement of top floor, ductility of columns, permanent displacements and so on. Furthermore, four different separation gaps between the building frames are considered to determine their influence on the behaviour of these frames. It is concluded that in most of the cases, the seismic sequences appear to be detrimental in comparison with the single seismic events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
研究了应用主动锚索控制装置控制相邻建筑地震响应的有效性。首先,建立了主动锚索-相邻建筑系统的运动方程;然后应用广义振型分析方法,寻求了主动锚索联结的相邻建筑的力学特性,特别是振型阻尼比;最后,在频率域内应用广义振型分析与虚拟激励相结合的方法,建立了主动锚索控制装置联结相邻建筑的随机地震响应的分析方法。应用本文建立的公式,我们编制了计算机程序,进行了广泛的参数研究,以评价控制装置的有效性,并确定最优传感器类型及控制装置参数。研究表明,如果应用速度传感器,并能适当地选择主动锚索控制器的参数,则可以显著地提高系统的振型阻尼比,减小两个结构的地震响应。  相似文献   

15.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure.  相似文献   

16.
The effect of different structures configurations on the collision between adjacent planar RC building frames subjected to strong earthquakes is examined in this paper. Two 5‐storey and two 8‐storey frames, regular or with setbacks, are combined together to produce nine different pairs of adjacent RC structures. These pairs of buildings are subjected to six strong ground motions that are absolutely compatible with the design process. Various parameters are investigated such as maximum displacements, permanent displacements, members' ductility and internal forces and interstorey drift ratios. It is concluded that the effect of collision of adjacent frames seems to be unfavourable for most of the cases and, therefore, the structural pounding phenomenon is rather detrimental than beneficial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
结构-地基动力相互作用体系振动台模型试验研究   总被引:61,自引:20,他引:61  
本文设计实现了结构-地基动力相互作用体系的振动台试验,通过试验研究了动力相互作用体系的地震动反应的主要规律,由于动力相互作用的影响,软土地基中相互作用体系的频率远小于刚性地基上不考虑结构-地基相互作用的结构频率,而阻尼比例则远大于结构材料阻尼比,软上地基对地震动走滤波和隔震作用,由于上部结构的振动反馈,基底地震动与自由场地震动不相同,上部结构柱顶加速度反应主要由基础转动引起的摆动分量组成,平均分量次之,而弹性变形分量很小,桩身应变幅值呈桩顶大,桩尖小的倒三角形分布,桩上接触压力幅值呈桩顶小,桩尖大的三角形分布,试验表明,结构-地基动力相互作用对体系地震反应的影响是很是显著的,本试验为验证理论与计算分析的研究成果,改进或提出合理的计算模型和分析方法,提出了丰富的试验数据,为进一步研究奠定的基础。  相似文献   

18.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional flexibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winkler-based approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design.  相似文献   

20.
张昊  康帅  王自法    裴笑娟 《世界地震工程》2022,38(2):029-37
目前结构的抗震分析主要是采用刚性地基假定,忽略了土-结构相互作用,而在实际情况中结构的地震破坏与刚性地基假定的预期结果并不相同。为了对比差异,本文以一6层混凝土框架结构为例,分别进行了Pushover分析和非线性时程分析。结果表明:当考虑土-结构相互作用时,结构的基底剪力减小,周期增大,顶点位移增大且结构的破坏主要集中在首层,柱端出现了塑性铰,更符合实际的震害情况。并将Pushover分析与非线性时程分析的结果进行对比,验证了Pushover分析的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号