首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline garnets are common in metamorphic rocks and may form as a result of close spacing of nuclei (if clustering is early) or impingement of larger grains (if clustering occurs later in the growth history). The timing of clustering relative to garnet growth is relevant to understanding the formation and evolution of porphyroblasts and evaluating the significance (if any) of clustering. Electron backscattered diffraction (EBSD) analysis of garnet-bearing metamorphic rocks reveals the presence of polycrystalline garnet in nine localities examined in this study: the northern Appalachians (Vermont, Maine, New York, USA); North American Cordillera (North Cascades Range, Washington; Snake Range, Nevada, USA); western Rocky Mountains (British Columbia, Canada); southern Menderes Massif (Turkey); Santander Massif (Colombia); and the Sanandaj–Sirjan zone (Hamadan, Iran). In some samples, polycrystals comprise ~20–30% of garnets analyzed, and chemical and textural evidence suggests that early coalescence of garnet polycrystals is common. Some early-coalescing polycrystals exhibit growth zoning that is concentric about the geometric center of the polycrystal. In thin section, these garnets may be undetectable as polycrystals based on morphology or zoning. In some polycrystals, zoning is unrelated to the location of internal grain boundaries; in others, Fe–Mn–Mg zoning has a different pattern than that of Ca; zoning patterns may vary on the scale of a single thin section. In addition, some polycrystals are characterized by high-angle misorientation boundaries that may be in special (non-random) orientations, an observation that indicates that these polycrystals are not random clusters of grains. The presence of internal grain boundaries may affect diffusion pathways and length scales, and may facilitate communication of porphyroblast interiors with matrix phases, thereby influencing reaction history of the rock and the composition/zoning of garnet.  相似文献   

2.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

3.
Within a mica schist from the coesite-bearing Brossasco-Isasca Unit (Western Alps), microstructural analysis shows that Alpine garnet grains are aligned with the crenulated foliation. Garnet crystallographic orientation was analysed with electron backscatter diffraction (EBSD): the obtained crystallographic dispersion patterns and distribution patterns of misorientation axes suggest a strong parallelism of {110} garnet planes with a 56°W-dipping foliation. The data are interpreted as evidence for an epitaxial growth of garnet upon (001) biotite planes, sometime during and/or after dispersion of the biotite/garnet crystals from their initially foliation-parallel orientation by rotation about the Alpine crenulation axis. This interpretation is based on the comparison of the measured EBSD data with: (i) theoretical dispersion trajectories of garnet crystallographic data, (ii) numerically modelled pole figures, and (iii) numerically modelled misorientation axis distribution patterns. Our data suggest that epitaxial growth of garnet upon biotite is allowed by distortion of the pseudohexagonal basal oxygen ring structure on (001) biotite surfaces, and that distortion is driven by introduction of missing ions. Our data further suggest that the spatial distribution of precursor phases influences the distribution patterns of garnet within mica schists.  相似文献   

4.
Metapelites from the inverted Barrovian sequence in the Sikkim Himalaya (northeast India) are shown to be largely continuous with respect to their bulk rock compositions, microstructures and pressure–temperature–time–deformation (PTtD) histories. However, the upper garnet–lower staurolite zone demarcates a region of microstructurally anomalous post-kinematic garnet populations contained within strongly segregated matrices. The different microstructures within samples from this region cannot be attributed to differences in their thermobarometric histories or bulk compositions, but are instead interpreted to represent an otherwise unexposed level of the Daling Group that is now exposed along a post-metamorphic thrust splay. These heterogeneous samples contain several discrete garnet populations that progressively crystallized with increasing PT. Garnet populations that experienced the most protracted growth now form complex polycrystals that exhibit crystallographically controlled and morphologically irregular interfaces adjacent to micaceous and quartzofeldspathic domains respectively. Electron backscatter diffraction indicates that these polycrystalline garnet structures contain numerous coalesced porphyroblasts that are structurally uncorrelated across their grain boundaries. However, a crystallographically preferred orientation at the polycrystal scale is interpreted to derive from epitaxial crystallization of early-formed garnet porphyroblasts on precursor mica. Later-nucleated porphyroblasts within polycrystals preferentially concentrated towards quartzofeldspathic domains, with the overall nucleation distribution likely controlled by a complex interplay between chemical heterogeneities, strain partitioning and epitaxial crystallization. The subsequent growth of these polycrystals was equally spatially heterogeneous; it was moderated by differences in the efficiency of grain boundary transfer between quartzofeldspathic and micaceous domains that precluded thin section-scale chemical equilibration. In contrast to samples from Sikkim containing more typical porphyroblastic populations in continuous and disseminated matrices, heterogeneous availability of garnet-forming components within this strongly layered matrix is shown to have resulted in grain-scale variations in growth rates and the spatial juxtapositioning of interface-controlled microstructures and locally equilibrated chemical compositions with those that were transport controlled.  相似文献   

5.
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.  相似文献   

6.
Three-dimensional quantitative textural analysis coupled with numerical modelling has been used to assess the dominant mechanisms governing crystallization of garnet porphyroblasts in rocks from diverse regional metamorphic environments. In every case, spatial dispositions, crystal size distributions, and compositional zoning patterns of porphyroblasts indicate the dominance of diffusion-controlled nucleation and growth mechanisms.
Nine samples from three geological areas were studied: a suite of semi-pelitic rocks from the Picuris Mountains, New Mexico (USA); a suite of mafic samples from the Llano Uplift, Texas (USA); and a kyanite schist from Mica Dam, British Columbia (Canada). The semi-pelitic suite exhibits post-deformational garnet growth, whereas garnet in the mafic suite and in the kyanite schist grew synkinematically in rocks displaying weak and strong penetrative fabrics, respectively.
For each sample, the centres and radii of thousands of garnet crystals were located and measured in three dimensions, using images produced by high-resolution computed X-ray tomography. Statistical measures of the degree of ordering and clustering of nucleation sites, and estimates of crystal isolation for each porphyroblast, were then computed from the measured spatial dispositions. These measures can be reproduced in simple numerical models only by diffusion-controlled nucleation and growth mechanisms. Normalized radius-rate relations computed from compositional zoning patterns in the garnets require thermally accelerated diffusion-controlled growth, providing independent confirmation of the conclusions based on textural analysis. The unexpected similarity of results from all samples indicates that diffusion-controlled nucleation and growth mechanisms may govern porphyroblast crystallization in many metamorphic regimes.  相似文献   

7.
An automated method for the calculation of P–T paths based on garnet zoning is presented and used to interpret zoning in metapelitic schist from the southern Canadian Cordillera. The approach adopted to reconstruct the P–T path is to match garnet compositions along a radial transect with predictions from thermodynamic forward models, while iteratively modifying the composition to account for fractional crystallization. The method is applied to a representative sample of garnet‐ and staurolite‐bearing schist from an amphibolite facies Barrovian belt in the southern Canadian Omineca belt. Garnet zoning in these schists is concentric and largely continuous from core to rim. Three zones are present, the first two of which coincide with sector‐zoned cores of garnet crystals. Similar zoning is developed in rocks that contain or lack staurolite, respectively, suggesting garnet growth was restricted to the initial part of the prograde P–T path prior to the development of staurolite. Growth zoning in large garnet crystals has not been significantly modified by diffusion. This interpretation is based on zoning characteristics of garnet crystals and is further supported by results of a forward model incorporating the effects of simultaneous fractional crystallization and intracrystalline diffusion. The P–T path calculated for this rock includes an initial, linear stage with a high dP/dT, and a later stage dominated by heating. The approach adopted in this study may have application to other garnet‐bearing rocks in which growth zoning is preserved.  相似文献   

8.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   

9.
Phase equilibria modeling of the pressure–temperature (PT) path of regional metamorphism and associated fluid expulsion, combined with constraints on the timescale of garnet growth by Sm–Nd geochronology, elucidates the fluid production rate and fluid flux during Barrovian metamorphism of pelitic rocks from Townshend Dam, VT, USA. This modeling builds on a published companion study that utilized Sm–Nd geochronology of concentric growth zones in multiple garnet grains, to constrain the duration of garnet growth in a large sample of schist at Townshend Dam to 3.8?±?2.2 million years (Gatewood et al., Chem Geol 401:151–168, 2015). PT pseudosections combined with observed mineral compositions constrain garnet growth conditions, and were utilized to construct PT path-dependent thermodynamic forward models. These models determine that garnet growth was initiated at ~?0.6 GPa and ~?525 °C, with a roughly linear loading and heating PT trajectory to >?0.8 GPa and ~?610 °C. Loading and heating rates of 2.4 km·Myear?1 (with a range of 1.6 to 5.8 km·million year?1) and 23 °C·million year?1 (with a range of 14 to 54 °C·million year?1), respectively, are consistent with model estimates and chronologic constraints for tectono-metamorphic rates during orogenesis. Phase equilibria modeling also constrains the amount of water release during garnet growth to be ~?0.7 wt% (or >?2 vol%), largely resulting from the complete consumption of chlorite. Coupling this estimate with calculated garnet growth durations provides a fluid production rate of 5.2 kg·m?3·million year?1 (with a range of 3.2 to 12.2 kg·m?3·million year?1) and when integrated over the overlying crustal column, a regional-scale fluid flux of 0.07–0.37 kg·m?2·million year?1. This range of values is consistent with those derived by numerical models and theory for regional-scale, pervasive fluid flow. This study signifies the first derivation of a fluid production rate and fluid flux in regional metamorphism using a direct chronology of water-producing (garnet-forming) reactions and can provide a framework for future studies on elucidating the nature and timescales of fluid release.  相似文献   

10.
The Breaksea Orthogneiss in Fiordland, New Zealand preserves water‐poor intermediate and mafic igneous rocks that were partially recrystallized to omphacite granulite and eclogite, respectively, at ≈ 1.8 GPa and ≈ 850°C. Metamorphic reaction consumed plagioclase and produced grossular‐rich garnet, jadeite‐rich omphacite, clinozoisite and kyanite. The extent of metamorphic reaction, identified by major and trace element composition and microstructural features, is patchy on the grain and outcrop scale. Domains of re‐equilibration coincide with areas that exhibit higher strain suggesting a causal link between crystal plastic strain and metamorphic reaction. Quantitative orientation analysis (EBSD) identifies gradual and stepped changes in crystal lattice orientations of igneous phenocrysts that are surrounded by homophase areas of neoblasts, characterized by high grain boundary to volume ratios and little to no internal lattice distortion. The narrow, peripheral compositional modification of less deformed garnet and omphacite phenocrysts reflects limited lattice diffusion in areas that lacked three‐dimensional networks of interconnected low‐angle boundaries. Low‐angle boundaries acted as elemental pathways (pipe diffusion) that enhanced in‐grain element diffusion. The scale of pipe diffusion is pronounced in garnet relatively to clinopyroxene. Strain‐induced mineral transformation largely controlled the extent of high‐T metamorphic reaction under relatively fluid‐poor conditions.  相似文献   

11.
雅鲁藏布江缝合带米林地区的石英片岩糜棱岩化强烈,线理及面理构造发育。S-C组构、"σ"残斑以及不对称褶皱等指示了上盘相对下盘向NW下滑的剪切运动趋势。电子背散射衍射(EBSD)测试结果表明:雪球状石榴子石变斑晶边部面理(S2)中石英包裹体晶格优选方位模式图指示的运动指向与石英岩基质面理(或外部面理;S3)中石英包裹体晶格优选方位模式图指示的运动指向一致,都是上盘向NW正滑。然而,雪球状石榴子石的核部(S1)石英包裹体优选方位(LPO)模式图指示相反运动指向。能量色散显微分析(EDS)测试结果表明石榴子石的成分环带显示连续生长环带特征。连接石榴子石核部面理(S1)可以恢复得到石英岩早期不对称褶皱形状的面理轨迹。这些说明文章样品中雪球状石榴子石变斑晶是生长在不对称褶皱之上的。此过程主要是剪切方向发生了旋转,而不是石榴子石自身旋转。这种雪球状石榴子石变斑晶的存在说明南迦巴瓦地区雅鲁藏布江缝合带西侧岩石最初经历向SE的逆冲作用,后期经历由SE向NW的拆离滑脱事件。  相似文献   

12.
羌塘中部的高压变质带位于龙木错—双湖—澜沧江板块缝合带之上,由榴辉岩、蓝片岩和石榴石白云母片岩组成。其形成过程对探讨板块缝合带的构造演化具有重要意义。2008年笔者在果干加年山地区的展金岩群湖南山岩组中发现了硬玉石榴石二云母片岩这种新的高压变质岩石类型,文中以其为研究对象,做了较为详细的岩石学、矿物学以及变质作用的研究,认为硬玉石榴石二云母片岩至少经历了二期的变质作用:第一期早期绿片岩相,形成了片理S1,其pT条件为T=425~434℃,p=300~500MPa;第二期主期蓝片岩相高压变质作用,形成岩石主期片理S2,其pT条件为T=472~481℃,p=1200~1700MPa。硬玉石榴石二云母片岩是榴辉岩折返过程中构造事件的产物,这期折返事件形成了218~220Ma的一期蓝片岩相变形-变质作用。  相似文献   

13.
Devolatilization reactions during prograde metamorphism are a key control on the fluid distribution within subduction zones. Garnets in Mn-rich quartz schist within the Sanbagawa metamorphic belt of Japan are characterized by skeletal structures containing abundant quartz inclusions. Each quartz inclusion was angular-shaped, and showed random crystallographic orientations, suggesting that these quartz inclusions were trapped via grain boundary cracking during garnet growth. Such skeletal garnet within the quartz schist formed related to decarbonation reactions with a positive total volume change (?V t > 0), whereas the euhedral garnet within the pelitic schists formed as a result of dehydration reaction with negative ?V t values. Coupled hydrological–chemical–mechanical processes during metamorphic devolatilization reactions were investigated by a distinct element method (DEM) numerical simulation on a foliated rock that contained reactive minerals and non-reactive matrix minerals. Negative ?V t reactions cause a decrease in fluid pressure and do not produce fractures within the matrix. In contrast, a fluid pressure increase by positive ?V t reactions results in hydrofracturing of the matrix. This fracturing preferentially occurs along grain boundaries and causes episodic fluid pulses associated with the development of the fracture network. The precipitation of garnet within grain boundary fractures could explain the formation of the skeletal garnet. Our DEM model also suggests a strong influence of reaction-induced fracturing on anisotropic fluid flow, meaning that dominant fluid flow directions could easily change in response to changes in stress configuration and the magnitude of differential stress during prograde metamorphism within a subduction zone.  相似文献   

14.
Contrasting ductility is recognized in the rocks of Cretaceous Ryoke metamorphic belt in Iwakuni area, southwest Japan. Pelitic schist is ubiquitous in the region and differences in mineral assemblages mark increase in metamorphic grade. The area has been graded as chlorite-biotite zone in the north progressing into biotite- and muscovite-cordierite zones in the south. Pelitic schist near the boundary between the biotite- and muscovite-cordierite zones has undergone partial silicification to form whitish silicified schist layers which contain two types of quartz veins: those parallel to foliation in the host rock are called schistosity-concordant veins, and those inclined to host rock foliation, schistosity-discordant veins. In this study we examined the quartz structure in the silicified schist and in both types of veins to understand the ductility contrast induced by the silicification process. Crystallographic orientations of quartz in the veins and silicified schist rocks were studied using the Scanning Electron Microscopy (SEM) based Electron Back Scatter Diffraction (EBSD) technique. Quartz c-axis orientations in the silicified schist are nearly random, demonstrating an absence of post-silicification ductile deformation. Quartz grains in the schistosity-concordant veins have preferred c-axis orientations perpendicular to the schistosity indicating ductile shortening. In contrast, schistosity-discordant veins display distinct quartz c-axis fabric than that found in the schistosity-concordant veins. This is because the two types of host rocks exhibit a difference in ductility during deformation. The presence of deformed quartz veins in the undeformed silicified schist indicates transformation of the ductile pelitic schist into the brittle silicified schist at mid-crustal levels where these rocks originate, hence forming contrasting rock layers. Schistosity-concordant veins in the biotite-rich pelitic schist deformed with its host rock in a ductile manner while the schistosity-discordant veins in the neighboring silicified schist were left intact. Silicification of the pelitic schist may have been caused by the silica-rich geofluids produced by subsurface processes. Geofluids responsible for the occurrence of such mechanically contrasting layers mark an increase in seismic reflectivity at mid-crustal depths and may be potential reflectors of seismic waves giving rise to the so-called “bright spots”.  相似文献   

15.
A detailed analysis of chemical zoning in two garnet crystals from Harpswell Neck, Maine, forms the basis of an interpretation of garnet nucleation and growth mechanisms. Garnet apparently nucleates initially on crenulations of mica and chlorite and quickly overgrows the entire crenulation, giving rise to complex two‐dimensional zoning patterns depending on the orientation of the thin section cut. Contours of Ca zoning cross those of Mn, Fe and Mg, indicating a lack of equilibrium among these major garnet constituents. Zoning of Fe, Mg and Mn is interpreted to reflect equilibrium with the rock matrix, whereas Ca zoning is interpreted to be controlled by diffusive transport between the matrix and the growing crystal. Image analysis reveals that the growth of garnet is more rapid along triple‐grain intersections than along double‐grain boundaries. Moreover, different minerals are replaced by garnet at different rates. The relative rate of replacement by garnet along double‐grain boundaries is ordered as muscovite > chlorite > plagioclase > quartz. Flux calculations reveal that replacement is limited by diffusion of Si along double‐grain boundaries to or from the local reaction site. It is concluded that multiple diffusive pathways control the bulk replacement of the rock matrix by garnet, with Si and Al transport being rate limiting in these samples.  相似文献   

16.
Strain rates from snowball garnet   总被引:3,自引:0,他引:3  
Spiral inclusion trails in garnet porphyroblasts are likely to have formed due to simultaneous growth and rotation of the crystals, during syn‐metamorphic deformation. Thus, they contain information on the strain rate of the rock. Strain rates may be interpreted from such inclusion trails if two functions are known: (1) The relationship between rotation rate and shear strain rate; (2) the growth rate of the crystal. We have investigated details of both functions using a garnetiferous mica schist from the eastern European Alps as an example. The rotation rate of garnet porphyroblasts was determined using finite element modelling of the geometrical arrangement of the crystals in the rock. The growth rate of the porphyroblasts was determined by using the major and trace element distributions in garnet crystals, thermodynamic pseudosections and information on the grain size distribution. For the largest porphyroblast size fraction (size L=12 mm) we constrain a growth interval between 540 and 590 °C during the prograde evolution of the rock. Assuming a reasonable heating rate and using the angular geometry of the spiral inclusion trails we are able to suggest that the mean strain rate during crystal growth was of the order of =6.6 × 10?14 s?1. These estimates are consistent with independent estimates for the strain rates during the evolution of this part of the Alpine orogen.  相似文献   

17.
Serial sectioning and imaging with a flatbed scanner yielded the three-dimensional size and spatial distribution of garnet porphyroblasts in two garnet schists and one staurolite-bearing schist from the Everett Formation, north-west Connecticut. The dominant garnet-producing reaction in all samples was chlorite+quartz=garnet+H2O. The appearance of staurolite, and additional garnet growth in the staurolite-bearing sample, was due to the reaction chloritoid=garnet+staurolite+chlorite. Statistical measures of garnet spatial distributions, using the pair correlation function (PCF), indicate that garnet crystals are weakly to strongly clustered at length scales between 2 and 10 mm. Such clustered nucleation may reflect minor bulk compositional variations. Covariance measures between garnet size and nearest-neighbour distance, using the mark covariance function (MCF), suggest a very weak correlation between crystal size and nearest-neighbour distance for length scales of 2 mm or less. These statistical data suggest that if diffusional gradients were present around growing garnet crystals, they did not influence nucleation and growth patterns at length scales greater than c. 2 mm. Compositional maps, through the garnet centres, show that the smaller crystals have lower Mn core compositions relative to larger crystals, consistent with progressive nucleation during pro-grade metamorphism. Radius-rate plots calculated from compositional X-ray maps show similar growth rates for garnet crystals of different size, consistent with an interface-controlled growth model for garnet. The presence of minor diffusional gradients around growing garnet cannot be entirely dismissed, but the lack of observable reaction rims, the clustered spatial distribution and the radius-rate data are most consistent with an interface-controlled garnet growth model.  相似文献   

18.
Elongate and deformed garnets from Glenelg, NW Scotland, occurwithin a thin shear zone transecting an eclogite body that hasundergone partial retrogression to amphibolite facies at circa700°C. Optical microscopy, back-scattered electron imaging,electron probe microanalysis and electron back-scatter diffractionreveal garnet sub-structures that are developed as a functionof strain. Subgrains with low-angle misorientation boundariesoccur at low strain and garnet orientations are dispersed, aroundrational crystallographic axes, across these boundaries. Towardshigh-strain areas, boundary misorientations increase and thereis a loss of crystallographic control on misorientations, whichtend towards random. In high-strain areas, a polygonal garnetmicrostructure is developed. The garnet orientations are randomlydispersed around the original single-crystal orientation. Somegarnet grains are elongate and Ca-rich garnet occurs on thefaces of elongate grains oriented normal to the foliation. Commonly,the garnet grains are admixed with matrix minerals, and, wherein contact with other phases, garnet is well faceted. We suggestthat individual garnet porphyroclasts record an evolution fromlow-strain conditions, where dislocation creep and recoveryaccommodated deformation, through increasing strain, where dynamicrecrystallization occurred by subgrain rotation, to higheststrains, where recrystallized grains were able to deform bydiffusion creep assisted grain boundary sliding with associatedrotations. KEY WORDS: diffusion creep; EBSD; garnet; plastic deformation; recrystallization  相似文献   

19.
In polycrystalline aggregates of olivine with mean grain sizes above 35 μm plus a low basaltic melt fraction, both wetted and melt-free grain boundaries are observed after equilibration times at high pressures and temperatures of between 15 and 25 days. In order to assess a possible dependence of the wetting behaviour on the relative orientation of neighbouring grains, a SEM based technique, electron backscatter diffraction (EBSD), is used to determine grain orientations. From the grain orientations relative orientations of neighbouring grains are calculated, which are expressed as misorientation axis/angle pairs. The distribution of misorientation angles and axes of melt-free grain boundaries differ significantly from a purely random distribution, whereas those of wetted grain boundaries are statistically indistinguishable from the random distribution. The relative orientation of two neighbouring grains therefore influences the character of their common grain boundary. However, no clustering towards special (coincident site lattice) misorientation axes is observed, with the inference that the energy differences between special and general misorientations are too small to lead to the development of preferred misorientations during grain growth. Received: 8 December 1997 / Revised, accepted: 6 April 1998  相似文献   

20.
Mylonitic gneisses from the Münchberg Massif contain single grains (type I) and polycrystalline aggregates (type II) of garnet displaying a distinct elongation parallel to a macroscopic lineation which is interpreted as the result of ductile deformation. Lattice-preferred orientations of quartz (textures) symmetrical to the macroscopic foliation and lineation and the lack of rotational microfabrics indicate that the bulk deformation was pure shear at least during the latest strain increments. Garnet textures measured by EBSD together with microprobe analyses demonstrate that these two structural types of garnet can be related to two different processes of ductile deformation: (1) For the single grains stretching can be attributed to diffusion creep along grain boundary zones (Coble creep). The related mass transfer is indicated by the fact that primary growth zones are cut off at the long faces of the grains while the related strain shadow domains do not show comparable chemical zoning. Pressure solution and precipitation suitable to produce similar structures can be largely ruled out because retrogressive reactions pointing to the presence of free hydrous fluids are missing. (2) For the polycrystalline garnet aggregates consisting of cores grading into fine-grained mantles, dislocation creep and associated rotation recrystallization can be assumed. Continuous lattice rotation from the core to the outer polycrystalline rim allow a determination of the related dominant slip systems which are {100}<010> and equivalent systems according to the cubic lattice symmetry. The same holds for garnets which appear to be completely recrystallized. For this type of fine-grained aggregates an alternative nucleation model is discussed. Due to penetrative dislocation glide in connection with short range diffusion and the resulting lattice rotation, primary growth zones are strongly disturbed.Since for the considered rock unit of the Münchberg Massif peak metamorphic temperatures between 630 and 670 °C can be assumed, this study clearly demonstrates that the inferred processes of ductile garnet deformation can occur not only in HT regimes as often suggested in the literature even if embedded within a matrix of “low-strength” minerals like quartz, feldspars and micas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号