共查询到20条相似文献,搜索用时 11 毫秒
1.
Sedaghati Parshan Gerami Mohsen Naderpour Hosein 《Bulletin of Earthquake Engineering》2022,20(11):6267-6305
Bulletin of Earthquake Engineering - Since post-mainshock events following a major earthquake are likely to occur, it is imperative to have an understanding of the functionality status of... 相似文献
2.
3.
4.
5.
6.
总结了6种半主动控制算法,采用黏滞阻尼器,对一座三跨简支梁桥进行了不同地震动输入下的半主动控制地震反应计算分析,比较分析了不同地震动输入和半主动控制算法对简支梁桥地震反应控制效果的影响。结果表明,半主动控制能有效地减小桥梁结构的大部分地震反应,同时可能会放大另外部分地震反应,这与地震动输入密切相关,不同地震动输入下的控制效果各不相同。所提六种半主动控制算法中,算法2、5、6对该简支梁桥地震反应的减震效果相对最好,这与各种算法的阻尼器耗能大小有关。 相似文献
7.
E. Tubaldi S. A. Mitoulis H. Ahmadi A. Muhr 《Bulletin of Earthquake Engineering》2016,14(4):1285-1310
This paper investigates the potential tensile loads and buckling effects on rubber-steel laminated bearings on bridges. These isolation bearings are typically used to support the deck on the piers and the abutments and reduce the effects of seismic loads and thermal effects on bridges. When positive means of fixing of the bearings to the deck and substructures are provided using bolts, the isolators are exposed to the possibility of tensile loads that may not meet the code limits. The uplift potential is increased when the bearings are placed eccentrically with respect to the pier axis such as in multi-span simply supported bridge decks. This particular isolator configuration may also result in excessive compressive loads, leading to bearing buckling or in the attainment of other unfavourable limit states for the bearings. In this paper, an extended computer-aided study is conducted on typical isolated bridge systems with multi-span simply-supported deck spans, showing that elastomeric bearings might undergo tensile stresses or exhibit buckling effects under certain design situations. It is shown that these unfavourable conditions can be avoided with the rational design of the bearing properties and in particular of the shape factor, which is the geometrical parameter controlling the axial bearing stiffness and capacity for a given shear stiffness. Alternatively, the unfavourable conditions could be reduced by reducing the flexural stiffness of the continuity slab. 相似文献
8.
Implications of seismic pounding on the longitudinal response of multi-span bridges - an analytical perspective 总被引:2,自引:0,他引:2
ReginaldDesRoches SusendarMuthukumar 《地震工程与工程振动(英文版)》2004,3(1):57-65
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes. The consequences of pounding include damage to piers, abutments, shear keys, bearings and restrainers, and possible collapse of deck spans. This paper investigates pounding in bridges from an analytical perspective. A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior, to study the seismic response to longitudinal ground motion. Pounding is implemented using the contact force-based Kelvin model, as well as the momentum-based stereomechanical approach. Parameter studies are conducted to determine the effects of frame period ratio, column hysteretic behavior, energy dissipation during impact and near source ground motions on the pounding response of the bridge. The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7. Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact, especially for elastic behavior of the frames. Representation of stiffness degradation in bridge columns is cssential in capturing the accurate response of pounding frames subjected to far field ground motion. Finally, it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records. 相似文献
9.
10.
地震作用下隔震简支梁桥碰撞反应的振动台试验 总被引:2,自引:0,他引:2
由地震引发的碰撞是影响桥梁地震反应以及造成桥梁破坏的重要因素。本文对地震作用下隔震简支梁桥的碰撞反应进行了振动台试验。设计制作1个两跨简支的隔震梁桥模型,试验研究了梁间隙、邻梁质量比、隔震支座类型等参数对桥梁碰撞反应的影响。试验结果表明邻梁间隙、邻梁质量比、隔震支座类型等参数对桥梁的碰撞反应有着显著的影响。邻梁间隙越大,碰撞次数越少;邻梁质量比越大,撞击力越大。铅芯橡胶支座比板式橡胶支座耗能能力更强,可以有效降低邻梁之间的撞击力甚至避免碰撞发生。从而为桥梁防碰撞设计提供了可靠的试验依据。 相似文献
11.
基于性能的既有钢筋混凝土建筑结构抗震评估与加固技术研究 总被引:2,自引:0,他引:2
根据我国现行的建筑结构抗震规范,无论是新建建筑结构的抗震设计还是既有建筑结构的抗震评估与加固,均通过小震弹性承载力计算 抗震延性构造措施来达到"小震不坏、中震可修、大震不倒"的抗震设防目标(对于不规则且具有明显薄弱部位的建筑结构还需要进行罕遇地震作用下的弹塑性层间变形验算)。对于抗震延性构造措施不满足现行规范的既有建筑结构的评估、改建、扩建,如果仅通过小震弹性的承载力计算,显然无法达到"大震不倒"的目标。本文通过引入国际上先进的基于性能的结构抗震思想,以结构层间位移和结构构件变形作为性能目标,从定量上解决了既有钢筋混凝土建筑结构的抗震评估与加固问题。 相似文献
12.
W.Phillip Yen 《地震工程与工程振动(英文版)》2009,8(1):127-135
Conventional seismic evaluation of existing bridges explores the ability of a bridge to survive under significant earthquake excitations. This approach has several major drawbacks, such as only a single structural performance of near collapse is considered, and the simplified approach of adopting strength-based concept to indirectly estimate the nonlinear behavior of a structure lacks accuracy. As a result, performance-based concepts that include a wider variety of structural performance states of a given bridge excited by different levels of earthquake intensity is needed by the engineering community. This paper introduces an improved process for the seismic evaluation of existing bridges. The relationship between the overall structural performance and earthquakes with varying levels of peak ground acceleration (PGA) can successfully be linked. A universal perspective on the seismic evaluation of bridges over their entire life-cycle can be easily obtained to investigate multiple performance objectives. The accuracy of the proposed method, based on pushover analysis, is proven in a case study that compares the results from the proposed procedure with additional nonlinear time history analyses. 相似文献
13.
14.
This paper investigates the non-linear inelastic seismic response of existing single-span simply supported bridges having bearings which can remain stable and slide after their anchor bolts are ruptured. A simplified equivalent model is developed for the inelastic analysis of these single-span simply supported bridges. Non-linear inelastic time-history analyses are conducted for various acceleration inputs. It is found that narrower bridges with longer spans may have considerable sliding displacements and fall off their supports if adequate seat width is not provided. It is also found that for the same ratio of friction coefficient to peak ground acceleration, the sliding displacement of a structural system is linearly proportional to the amplitude of the peak ground acceleration beyond a certain threshold value. This is also demonstrated analytically from an energy approach point of view. The distribution of the energy content of an earthquake, which is related to its velocity time history, can be an indication of the propensity of an earthquake to cause high sliding displacements. Ground motions with high frequency content or high Ap/Vp ratio may produce smaller sliding displacements than ground motions with relatively lower Ap/Vp ratios. 相似文献
15.
This paper proposes a probabilistic approach for the pre‐event assessment of seismic resilience of bridges, including uncertainties associated with expected damage, restoration process, and rebuilding/rehabilitation costs. A fragility analysis performs the probabilistic evaluation of the level of damage (none, slight, moderate, extensive, and complete) induced on bridges by a seismic event. Then, a probabilistic six‐parameter sinusoidal‐based function describes the bridge functionality over time. Depending on the level of regional seismic hazard, the level of performance that decision makers plan to achieve, the allowable economic impact, and the available budget for post‐event rehabilitation activities, a wide spectrum of scenarios are provided. Possible restoration strategies accounting for the desired level of resilience and direct and indirect costs are investigated by performing a Monte Carlo simulation based on Latin hypercube sampling. Sensitivity analyses show how the recovery parameters affect the resilience assessment and seismic impact. Finally, the proposed approach is applied to an existing highway bridge located along a segment of I‐15, between the cities of Corona and Murrieta, in California. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
This paper carries out a parametrical study of the pounding phenomenon associated with the seismic response of multi‐span simply supported bridges with base isolation devices. In particular, the analyses focus on the causal relationship between pounding and the properties of a spatially varying earthquake ground motion. In order to include the effect of the torsional component of pounding forces on the seismic response of the whole structure, a three‐dimensional (3D) finite element model has been defined and 3D non‐linear time‐history analyses have been performed. A parametrical study on the size of the gaps between adjacent bridge decks has highlighted that the pounding effects are amplified when the spatially varying ground motion time histories at each support are considered. Because of a spatially varying input, the pounding forces can assume values 3–4 times larger than those derived by a conventional seismic analysis with uniform input or with spatial input but considering ground motion wave passage effect only. The numerical results show that in order to achieve an acceptably safe structural performance during seismic events, a correct design of the isolation devices should take into account the relative displacements calculated by means of a non‐linear time‐history analysis with multi‐support excitation. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
2020年6月交通运输部发布了新版《公路桥梁抗震设计规范》(JTG/T 2231-01-2020)(简称"《公规》")。本文比较了现行《铁路工程抗震设计规范》(GB 50111-2006)(2009年版)(以下简称"《铁规》")与《公规》的抗震设计相关内容,并分别采用两本规范对25m墩高(D类)、35m墩高(C类)和40m墩高(B类)简支梁进行抗震设计,比较二者地震力和配筋设计结果差异。结果表明:《公规》和《铁规》的抗震设计框架和内容基本一致,在具体规定上如E2或罕遇地震设计最大加速度响应值以及桥墩强度和延性验算方法等方面不同;D类桥梁《铁规》地震力明显大于《公规》,C类和B类桥梁《铁规》和《公规》地震力相当;地震力相同时,《铁规》配筋率计算值大于《公规》,因《铁规》配筋设计基于容许应力法,而《公规》基于极限状态法。 相似文献
18.
A roller seismic isolation bearing is proposed for use in highway bridges. The bearing utilizes a rolling mechanism to achieve seismic isolation and has a zero post‐elastic stiffness under horizontal ground motions, a self‐centering capability, and unique friction devices for supplemental energy dissipation. The objectives of this research are to investigate the seismic behavior of the proposed bearing using parametric studies (1) with nonlinear response history analysis and (2) with equivalent linear analysis according to the AASHTO guide specifications, and by comparing the results from both analysis methods (3) to evaluate the accuracy of the AASHTO equivalent linear method for predicting the peak displacement of the proposed bearing during an earthquake. Twenty‐eight ground motions are used in the studies. The parameters examined are the sloping angle of the intermediate plate of the bearing, the amount of friction force for supplemental energy dissipation, and the peak ground acceleration levels of the ground motions. The peak displacement and base shear of the bearing are calculated. Results of the studies show that a larger sloping angle does not reduce the peak displacement for most of the parametric combinations without friction devices. However, for parametric combinations with friction devices, it allows for the use of a higher friction force, which effectively reduces the peak displacement, while keeping a self‐centering capability. The AASHTO equivalent linear method may underestimate the peak displacement by as much as 40%. Vertical ground motions have little effect on the peak displacement, but significantly increase the peak base shear. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
A novel blind deconvolution methodology for identification of the local site characteristics based on two seismograms recorded on the free surface of a sediment site is presented. The approach does not require recordings at depth nor at a nearby rock outcrop, and eliminates the need for any prior parameterization of source and site characteristics. It considers that the surface recordings are the result of the convolution of the ‘input motion at depth' with transfer functions (channels) representing the characteristics of the transmission path of the waves from the input location to each recording station. The input motion at depth is considered to be the common component in the seismograms (same input in a statistical sense). The channel characteristics are considered to be the part in the seismograms that is non-common, since the travel path of the waves from the input motion location at depth to each recording station is different, due to spatially variable site effects. By means of blind deconvolution, the algorithm eliminates what is common in the seismograms, namely the input motion at depth, and retains what is different, namely the transfer functions of the site from the input location to each recording station. It estimates the site response in both frequency and time domains, and identifies the duration of the site's transfer functions. The methodology is applied herein to synthetic data at realistic sites for performance validation. The blindly estimated results are in almost perfect agreement with the actual site characteristics, indicating that the approach is a promising new tool for seismic site-response identification from recorded data. 相似文献
20.
王焕定 《地震工程与工程振动》2005,25(5):186-188
本文是一篇关于《建筑工程抗震性态设计通则(试用)》的讨论,主要针对第3、5、10和第11章的内容,将通则与现行抗震设计规范进行了对比,并就所涉及的方面提了一些建议。 相似文献