首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological security is a fundamental component of regional security that has drawn increased attention worldwide over the past two decades. This paper presents a novel approach to assess the status of land ecological security (LES) in Shanghai, China from 1992 to 2011 using spatial variables and a logistic regression model. The LES status of 1745 points within the study area in 1992, 2001 and 2011 was sampled systematically using a 2 × 2 km grid sample frame and evaluated based on an expert method with ten experts from five fields. A five-point Likert scale was used to score the LES status as very insecure, insecure, neutral, secure or very secure. We identified several explanatory factors to the LES status, including distance-based variables describing the proximities to urban center, developed areas and sources of pollution, as well as variables regarding the density of built-up areas and the mean value of normalized difference vegetation index. A logistic regression model was used to quantify the relationship between LES scores and the spatial variables at each of the three time points, resulting in a series of maps illustrating the LES patterns of Shanghai in 1992, 2001 and 2011. The results show that LES is either very insecure or insecure at the center of Shanghai and at its district centers, and the LES of the entire Shanghai municipality has deteriorated significantly from 1992 to 2011. This research contributes to an enhanced understanding of LES changes resulting from rapid urbanization and industrialization of the Shanghai municipality and provides a methodological framework to study LES elsewhere.  相似文献   

2.
The purpose of this study is to develop an assessment framework of ecological security at the watershed scale to meet the need of watershed management, and to assess ecological security using this framework in the middle and lower reaches of Hanjiang River Basin (in Hubei Province, China). The states and their changes of ecological security in the study region are investigated with the support of ERDAS and ARC/INFO platform. The results show that the ecological security index (P) values in 1995 and 2000 were 0.685 and 0.699 respectively in the study region. While in 2005 and 2010, the P values were decreased to 0.657 and 0.624. In 1995, there were 5 counties with degree II state (the poor state) of ecological security, and 14 counties with degree III state (the common state). By 2000, the amount of counties with degree II decreased to 4 counties. And the number of counties with degree II is the same as 2000 in 2005. The result of 2010 shows there were 12 countries with degree III state as well as 7 counties with degree II state. The results of our case study of the Hanjiang River Basin reflect that the ES situation is very grim in the study area. The degree of ecological security developed in this study can be used as a useful tool for watershed managers and decision-makers.  相似文献   

3.
Due to the increasingly serious ecological degradation of land systems, the land ecological security issues have attracted more and more attention of policy makers, researchers and citizens. Aiming at overcoming the disadvantages in subjectivity and complexity of the currently used assessment methods, an integrative fuzzy set pair model for assessing the land ecological security was developed by integrating fuzzy assessment and set pair analysis (SPA). The approximate degree of land ecological security to the optimal standard set was calculated to describe the secure level by combining multiple indices. The indices and weights were determined by a pressure-state-response model and the fuzzy analytic hierarchy process (AHP), respectively. Aided by a geographic information system, this model was applied to evaluate comprehensively the status of land ecological security in Xiaolangdi Reservoir Region, China, taking the administrative division as the assessment unit. The results showed that 20% of the total area maintained a slightly secure status, while 50% of the study area was of a middle or seriously low grade of land ecological security. The remaining portion (30%) was the most ecologically insecure. From the spatial prospective, obvious variations were observed. The land eco-security gradually decreased from the Xiaolangdi Dam to its surrounding regions. It was concluded that the status of the integral land ecological security of Xiaolangdi Reservoir Region was in the middle level, and increasingly intense human activities speeded up the degradation of regional land ecosystem in recent years and thus induced the crisis of land ecological security.  相似文献   

4.
基于土地利用动态变化的太湖地区景观生态风险评价   总被引:8,自引:1,他引:8  
许妍  高俊峰  高永年 《湖泊科学》2011,23(4):642-648
在GIS和RS技术支持下,以遥感数据和土地利用数据为基础,以行政区划为评价单元,定量分析太湖地区1990-2008年土地利用变化及其转化关系;从土地利用变化和景观结构角度构建景观生态风险评价模型,定量评价了研究区内景观生态风险的时空动态变化特征.结果表明:太湖地区景观生态风险分布与区内土地利用方式和强度具有较高关联.景...  相似文献   

5.
Assessing spatial pattern of urban thermal environment in Shanghai, China   总被引:6,自引:6,他引:0  
The aggravating urban thermal environment has considerable adverse effects on urban physical environment, energy consumption, and public health. Due to the complexity of factors contributing to the urban thermal environment, traditional statistical methods are insufficient for acquiring data and analyzing the impacts of human activities on the thermal environment, especially for identifying dominant factors. Based on thermal remote sensing imageries and Geographic Information System analysis, we assessed spatial pattern of urban thermal environment in Shanghai in 2008, and analyzed the factors contributing to the generation of urban heat island (UHI) using principal component analysis (PCA). We found that Shanghai had obvious UHI with uneven spatial pattern in 2008. Further, we identified three most important components leading to the variances of Shanghai’s UHI: the gradient from man-made to natural land cover, landscape configuration, and anthropogenic heat release. A linear model has thus been successfully constructed, implying that PCA is helpful in identifying major contributors to UHI. The findings are of significance for policy implication to urban thermal environment mitigation.  相似文献   

6.
7.
Assessing agroecosystem health at landscape scale has been rarely reported. A geospatial assessment framework, by integrating remote sensing, geographical information systems, landscape metrics, geostatistics and catastrophe theory, was proposed and applied to characterize the spatial variations of agroecosystem health for a typical region in the eastern coastal agricultural plain, China. After appropriate pretreatments, eleven hierarchically structured indicators, subject to catastrophe models, were aggregated into an integrated index for each 30 m grid cell across the study area. Great spatial variations in agroecosystem health were identified. Areas covered by water bodies and impervious surfaces, under which soils can not function, generally presented low values. Larger slope or higher heavy metal polluted areas and those near roads showed low or moderate values of agroecosystem health index. Concerning the spatial variations of agroecosystems health, patches of approximately 4 km in diameter were identified, within which more homogenous patterns would be expected. Specifically, the spatial variations of agroecosystems health should be resulted from the location-specific coupled influences of the underlying indicators. The integrated agroecosystem health index is believed to be helpful for managers to promote environmental management. The geospatial assessment framework reported in this paper was simple and operational, and has potential to be applicable to other areas with similar conditions at landscape scale.  相似文献   

8.
水库生态安全评估方法(Ⅰ):IROW框架   总被引:6,自引:1,他引:5  
王丽婧  郑丙辉 《湖泊科学》2010,22(2):169-175
近年来,生态安全评估在方法和实践上得到较大发展,然而,受水库特殊性、系统性认识缺乏等限制,目前尚无水库型水体的有效评估方法.本研究借鉴国外相关理念,分析了水库生态系统特征,强调了水库演变规律特殊性、水库时空异质性、水库生态系统管理综合性.着眼于此,提出了基于IROW(Inflow-Reservoir-Outflow-Watershed)框架的评估方法,将水库上游来水安全、水库水体安全、水库下泄水安全、库区流域影响4类要素纳入框架综合考虑;并阐述了评估预处理与结果分析的关注要点,包括分区、分时段评估等建议.  相似文献   

9.
Abstract

Modelling and prediction of hydrological processes (e.g. rainfall–runoff) can be influenced by discontinuities in observed data, and one particular case may arise when the time scale (i.e. resolution) is coarse (e.g. monthly). This study investigates the application of catastrophe theory to examine its suitability to identify possible discontinuities in the rainfall–runoff process. A stochastic cusp catastrophe model is used to study possible discontinuities in the monthly rainfall–runoff process at the Aji River basin in Azerbaijan, Iran. Monthly-averaged rainfall and flow data observed over a period of 20 years (1981–2000) are analysed using the Cuspfit program. In this model, rainfall serves as a control variable and runoff as a behavioural variable. The performance of this model is evaluated using four measures: correlation coefficient, log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion (BIC). The results indicate the presence of discontinuities in the rainfall–runoff process, with a significant sudden jump in flow (cusp signal) when rainfall reaches a threshold value. The performance of the model is also found to be better than that of linear and logistic models. The present results, though preliminary, are promising in the sense that catastrophe theory can play a possible role in the study of hydrological systems and processes, especially when the data are noisy.

Citation Ghorbani, M. A., Khatibi, R., Sivakumar, B. & Cobb, L. (2010) Study of discontinuities in hydrological data using catastrophe theory. Hydrol. Sci. J. 55(7), 1137–1151.  相似文献   

10.
An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions.  相似文献   

11.
上海市地面沉降防治措施及其效果   总被引:11,自引:0,他引:11  
上海是我国著名的地面沉降灾害城市,经过45年来防治地面沉降的探索,取得了防治平原区地面沉降灾害的宝贵经验.上海地面沉降历史可分为两大时期,即1921~1965年快速沉降时期和1966~1995年的缓慢沉降时期.20世纪20年代以来,上海的主要地面沉降灾害有:潮水上岸、暴雨导致地面积水、高潮桥下通航受阻、基础设施遭损、地貌形态改变等.自1956年以来,上海采取了如下八个方面的防治措施:建设防汛墙、建设排涝泵站、压缩地下水开采量、开展地下水人工回灌、调整地下水开采层次、地面沉降监测与研究、制订地下水采灌方案及地面沉降法制措施等.如今,抵御住了潮水上岸的洪灾;暴雨导致地面积水程度大大降低.1966~1995年,上海市中心城区沉降量仅116mm(年均4mm),仅为1921~1965年的7%,取得了以中心城区最小的地面沉降量换取全市最大量地开发地下水资源的效果.  相似文献   

12.
突变理论在地震资料解释异常地质体中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
阐述了尖点突变理论,建立了地震信号尖点突变模型并转化为尖点突变的标准形式,在时间域内提取突跳势、突跳时间;在频率域内提取突跳势、突跳次数等参数.运用突变理论对实际地震资料进行薄煤带的解释表明:突跳参数曲线上异常的位置与异常地质体边界的位置有关,为地震资料解释异常地质体提供了一种新的途径.  相似文献   

13.
This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models.  相似文献   

14.
23 ostracod species have been recorded from surface and short core samples from the Qilian Mountains, NW China. Brooks and rivers, small shallow meadow and oxbow pools and a lake were sampled at an altitude ranging from 2900 m to 3570 m asl. Brooks were dominated by Candona rawsoni, Ilyocypris cf. bradyi and/or Ilyocypris lacustris and Limnocythere inopinata. In river habitats Candona candida and Eucypris sp. were most abundant. Meadow pools with peaty, dystrophic waters mainly contained valves of Ilyocypris cf. bradyi and/or Ilyocypris lacustris and Eucypris sp. whereas the latter was replaced by Heterocypris incongruens in a shallow oxbow pool. Candona rawsoni, Cyclocypris ovum and Ilyocypris echinata were the most frequent species in the freshwater Lake Luanhaizi.

The recorded taxa are mainly distributed in the holarctic realm but Fabaeformiscandona danielopoli and Ilyocypris echinata appear to be restricted to the cold mountainous region in China.  相似文献   


15.
针对湖库生态安全综合性调控技术缺乏的现状,为支撑和保障湖库型水体生态安全,开展了湖库生态安全调控概念、特征及技术需求分析,研究并系统构建了湖库生态安全调控技术框架(T-PIRLEP),阐述和分析了该框架的主要技术环节.根据研究结果,认为湖库生态安全具备可调控的特性,调控目的旨在维护以人类为终点的湖库生态环境和生态服务的安全.湖库生态安全调控具有综合性、功能导向性、类型差异性、空间异质性和不确定性的特征.基于T-PIRLEP的调控技术框架以湖库生态安全保障目标(T)为核心,以生态承载力为重要约束参考,从影响湖库生态安全状况的人口增长产业发展资源利用污染排放生态保护政策管理的耦合作用过程出发,采取以人口调控(P)、产业调控(I)、资源利用调控(R)、负荷控制(L)、生态调控(E)、政策调控(P)6类要素为主的调控措施来实现湖库生态安全调控.研究指出,调控过程需以湖库调控类型和其调控定位为引导,注重调控目标、调控措施、目标可达性分析之间的相互反馈,强化与生态安全评估研究的有机衔接.  相似文献   

16.
Regional ecological degradation induced by hydroelectric project construction (HPC) is of great concern in the field of landscape ecology research. Using GIS-based spatial analysis, we predicted and assessed the impacts of HPC on the ecological integrity of the Nuozhadu Nature Reserve (NNR). The results show that, after Nuozhadu HPC, the naturality of the NNR will be modified due to changes in the landscape composition such that larger areas covered by vegetation will be occupied by construction land and flooded by water areas. Meanwhile, landscape diversity will increase due to the additional landscape types of construction land and submerged areas, while landscape stability will decrease because of the splitting and contagion of the landscape after Nuozhadu HPC. The human disturbance index shows that the HPC will contribute to increasing the disturbance of the ecosystem. From buffer analyses, we conclude that the impacts of HPC will mainly occur in buffer zones over the distance of 800 m from the Lancang River in the NNR, and tend to be moderate in the 800–5,000 m buffer zone. Therefore, within the 800 m buffer zone, taking the naturality, diversity and stability of the ecosystem as well as anthropogenic interference as evaluation indicators, we calculated the ecological integrity index; the results indicate that the ecological integrity of the NNR will decrease by 7.6 % after project construction.  相似文献   

17.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

18.
This paper analyses the effect of spatial resolution and distribution of model input data on the results of regional-scale land use scenarios using three different hydrological catchment models. A 25 m resolution data set of a mesoscale catchment and three land use scenarios are used. Data are systematically aggregated to resolutions up to 2 km. Land use scenarios are spatially redistributed, both randomly and topography based. Using these data, water fluxes are calculated on a daily time step for a 16 year time period without further calibration. Simulation results are used to identify grid size, distribution and model dependent scenario effects. In the case of data aggregation, all applied models react sensitively to grid size. WASIM and TOPLATS simulate constant water balances for grid sizes from 50 m to 300–500 m, SWAT is more sensitive to input data aggregation, simulating constant water balances between 50 m and 200 m grid size. The calculation of scenario effects is less robust to data aggregation. The maximum acceptable grid size reduces to 200–300 m for TOPLATS and WASIM. In case of spatial distribution, SWAT and TOPLATS are slightly sensitive to a redistribution of land use (below 1.5% for water balance terms), whereas WASIM shows almost no reaction. Because the aggregation effects were stronger than the redistribution effects, it is concluded that spatial discretisation is more important than spatial distribution. As the aggregation effect was mainly associated with a change in land use fraction, it is concluded that accuracy of data sets is much more important than a high spatial resolution.  相似文献   

19.
This paper introduces the project on ‘Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)’ that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash–Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations.  相似文献   

20.
Stream water quality is directly influenced by land use and human practices in the surrounding environment. Understanding such effects and the spatial extent of impacts is essential to generate reliable information for ecosystem-based management of water resources. We identified sources of impact on water quality and characterized indicator-specific landscape influence on samples collected during base flow along the Chubut River (43 °S, 69 °W). We modeled Total Nitrogen (TN), Total Phosphorous (TP), Soluble Reactive Phosphorous (SRP) concentrations and δ15N of particulate organic matter along the river, as a function of effective contribution areas (AEC) of Land Use/Land Cover (LULC). AECs were calculated by assuming that landscape influence decays exponentially with the Euclidean distance between a given LULC parcel and the sampling point. We calibrated the model to the observations by estimating an indicator-specific decay rate. Agriculture and barren lands were the main sources of phosphate nutrients whereas urban areas were the main source of TN. Radius of landscape influence for SRP (100–180 km) was larger than for TP (10–25 km), reflecting different patterns of mobilization and delivery in the catchment. δ15N variation was explained by vegetation cover but the influence rapidly decreased (1–4 km) reflecting a mostly autochthonous source of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号