共查询到20条相似文献,搜索用时 10 毫秒
1.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession. 相似文献
2.
《Journal of Asian Earth Sciences》2010,37(6):407-412
The end-Permian mass extinction is now robustly dated at 252.6 ± 0.2 Ma (U–Pb) and the Permian–Triassic (P–T) GSSP level is dated by interpolation at 252.5 Ma. An isotopic geochronological timescale for the Late Permian–Early Triassic, based on recent accurate high-precision U–Pb single zircon dating of volcanic ashes, together with calibrated conodont zonation schemes, is presented. The duration of the Early Triassic (Induan + Olenekian stages) is estimated at only 5.5 million years. The duration of the Induan Stage (Griesbachian + Dienerian sub-stages) is estimated at ca. one million years and the early Olenekian (Smithian sub-stage) at 0.7 million years duration. Considering this timescale, the “delayed” recovery following the end-Permian mass extinction may not in fact have been particularly protracted, in the light of the severity of the extinction. Conodonts evolved rapidly in the first 1 million years following the mass extinction leading to recognition of high-resolution conodont zones. Continued episodic global environmental and climatic stress following the extinction is recognized by multiple carbon isotope excursions, further faunal turnover and peculiar sedimentary and biotic facies (e.g. microbialites). The end-Permian mass extinction is interpreted to be synchronous globally and between marine and non-marine environments. The nature of the double-phased Late Permian extinction (at the Guadalupian–Lopingian boundary and the P–T boundary), linked to large igneous provinces, suggests a primary role for superplume activity that involved geomagnetic polarity change and massive volcanism. 相似文献
3.
The Helanshan tectonic belt is located to the west of the Ordos Basin, and separates the Alxa (or Yinshan) Massif to the west from the Ordos block to the east. Triassic sedimentation in the Helanshan tectonic belt records important information about tectono-sedimentary process between the Alxa Massif and the Ordos block. Detailed geological mapping and investigation on the lithological package, sedimentary facies and paleocurrent orientation have been conducted on the Middle to Upper Triassic clastic rocks in the Helanshan tectonic belt. The succession is characterized by upward-fining sequence and comprises coarse grained alluvial-fluvial facies in the lower part as well as deltaic-lacustrine facies in the upper part. Based on detailed study and comparisons on the sedimentary sequence along various sections, the Middle to Upper Triassic strata have been revealed that show clear southeastward-deepening sedimentary differentiation and transgression from southwest to northeast, which are consistent with the southeastward flowing paleocurrent. These features indicate a southeastward-dipping paleogeography in the Helanshan tectonic belt, which was original western part of southeastward orientated fluvial-lacustrine system in the northwestern proto-Ordos Basin. Further to the east, the Triassic succession in the Ordos Basin displays gradually thickening and alluvial-fluvial system flowed from southeast to northwest, showing a huge thick sedimentary wedge in the western basin margin. Together with the Late Permian–Early Triassic closure of the Paleo-Asian Ocean to the north, the Late Triassic extensional structures and diabase dykes in the Helanshan tectonic belt, all the above sedimentary features could be mostly interpreted as records of an extensional basin correlated to post-collisional collapse of the Central Asian Orogenic Belt. 相似文献
4.
5.
6.
The early stage of Sichuan Basin formation was controlled by the convergence of three major Chinese continental blocks during the Indosinian orogeny that include South China,North China,and Qiangtang blocks.Although the Late Triassic Xujiahe Formation is assumed to represent the commencement of continental deposition in the Sichuan Basin,little research is available on the details of this particular stratum.Sequence stratigraphic analysis reveals that the Xujiahe Formation comprises four third-order depositional sequences.Moreover,two tectono-sedimentary evolution stages,deposition and denudation,have been identified.Typical wedge-shaped geometry revealed in a cross section of the southern Sichuan Basin normal to the Longmen Shan fold-thrust belt is displayed for the entire Xujiahe Formation.The depositional extent did not cover the Luzhou paleohigh during the LST1 to LST2 (LST,TST and HST mean Iowstand,transgressive and highstand systems tracts,1,2,3 and 4 represent depositional sequence 1,2,3 and 4),deltaic and fluvial systems fed sediments from the Longmen Shan belt,Luzhou paleohigh,Hannan dome,and Daba Shan paleohigh into a foreland basin with a centrally located lake.The forebulge of the western Sichuan foreland basin was located southeast of the Luzhou paleohigh after LST2.According to the principle of nonmarine sequence stratigraphy and the lithology of the Xujiahe Formation,four thrusting events in the Longmen Shan fold-thrust belt were distinguished,corresponding to the basal boundaries of sequences 1,2,3,and 4.The northern Sichuan Basin was tilted after the deposition of sequence 3,inducing intensive erosion of sequences 3 and 4,and formation of wedge-shaped deposition geometry in sequence 4 from south to north.The tilting probably resulted from small-scale subduction and exhumation of the western South China block during the South and North China block collision. 相似文献
7.
正Objective It is still controversial about when,where and how the East Paleotethys Ocean closed due to the lack of reliable paleomagnetic data from the blocks or terranes located in both sides of the suture,which prohibits our better understanding of a series of key scientific issues such as how major blocks of East Asia collided together,and the 相似文献
8.
Q. Yuan 《Australian Journal of Earth Sciences》2018,65(5):727-738
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions. 相似文献
9.
The southwestern margin of the North China Craton (NCC) is located between the Alxa Terrane to the northwest, the North Qilian Orogen to the west and the North Qinling Orogen to the south. However, the paleogeographic and tectonic evolution for the southwestern part of the NCC in the Late Paleozoic is still poorly constrained. In order to constrain the Late Paleozoic tectonic evolution of the southwestern NCC, we carried out detailed field work and detrital zircon U-Pb geochronological research on Middle–Late Permian sedimentary rocks at the southwestern margin of the NCC. The U-Pb age spectra of detrital zircons from six samples are similar, showing four populations of 2.6–2.4 Ga, 2.0–1.7 Ga, 500–360 Ma and 350–250 Ma. Moreover, on the basis of the weighted-mean age of the youngest detrital zircons (257 ± 4 Ma), combined with the published results and volcanic interlayers, we propose that the Shangshihezi Formation formed during the Middle–Late Permian. Our results and published data indicate that the detrital zircons with age groups of 2.6–2.4 Ga and 2.0–1.7 Ga were likely derived from the Khondalite Belt and Yinshan Block in the northwestern NCC. The junction part between the North Qinling and North Qilian Orogen may provide the 500–360 Ma detrital zircons for the study area. The 350–250 Ma detrital zircons were probably derived from the northwestern part of the NCC. The majority of materials from Shangshihezi Formation within the study area were derived from the northwestern part of the NCC, indicating that the northwestern part of the NCC was strongly uplifted possibly resulting from the progressive subduction and closure of the Paleo-Asian Ocean. A small amount of materials were sourced from southwestern part of the NCC, indicating that the North Qinling Orogen experienced a minor uplift resulting from the northward subduction of the South Qinling terrane. 相似文献
10.
WANG Luojing Lü Dawei ZHANG Zhihui James C. HOWER Munira RAJI ZHANG Yushuai SHEN Yangyang GAO Jie 《《地质学报》英文版》2023,97(5):1355-1371
Tonstein layers are found worldwide in the Permo–Carboniferous coal-bearing strata. This study investigates the geochronology, mineralogy, and geochemistry of four tonstein samples from the Permo–Carboniferous Benxi Formation, Ordos Basin, North China Craton(NCC). The typical features of the studied tonsteins include thin beds, lateral continuity, angular quartz grains, and euhedral zircons with similar U-Pb ages, indicating a significant pyroclastic origin. In addition, the tonstein samples hav... 相似文献
11.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle. 相似文献
12.
《Comptes Rendus Geoscience》2008,340(2-3):190-201
The Central Asia Orogenic Belt (CAOB) corresponds to the domain where Siberia and Mongolia were welded to North China. The eastern extension of the CAOB in Northeast China is disputed, since both suture location and timing are poorly documented. This paper reports for the first time the recognition of two suture zones in the southern part of Northeast China (Manchuria), between the Fushun Mishan and Yilan-Yitong faults. In the Jilin Province, west-directed thrust sheets involving successively, from west to east, passive continental margin rocks, metamorphic rocks and ophiolites, block-in-matrix formations and arc plutons indicate a Permian–Early Triassic collision. In the Liaoning Province, arc plutonism and top-to-the-north ductile shearing, coeval with the emplacement of an ophiolitic nappe, suggest a Palaeozoic collision. These two sutures are correlated with the Ondor Sum and Solonker sutures, described in Inner Mongolia. A new geodynamic model involving rifting and collision of the southern part of the Xilinhot Block with North China is proposed. 相似文献
13.
Tabular–type uranium ore deposits (the Hangjinqi and Daying deposits) have recently been found in the Middle Jurassic Zhiluo Formation, north of the Ordos Basin, China. Petrographic observations, the chemical composition of U minerals determined by EMPA and fs–LA–ICP–MS, whole rock geochemistry and the microthermometric study of fluid inclusions have been integrated to characterize the genetic conditions of the U mineralization in the Hangjinqi sandstone–hosted deposit. Two different groups of U minerals have been identified. One group includes coffinite(I) associated with vanadium–rich micas. Coffinite(I) is enriched in vanadium (V) and devoid of iron (Fe) and yttrium (Y) and has a LREE–enriched chondrite–normalized REE pattern. The U minerals of this group are similar to meteoric fluid infiltration related deposits. The second group has coeval coffinite(II) and coarsely crystalline calcite cement. Coffinite(II) is enriched in Y and Fe and depleted in V and is marked by a flat chondrite–normalized REE pattern, which is compatible with typical hydrothermal genetic deposits with high–salinity mineralizing fluids. The temperature and salinity of the primary aqueous inclusions in the ore–stage calcite are 120–180 °C and 8.00–16.34% (eq. wt% NaCl), respectively. These mineral assemblages, temperatures and salinities indicate that the Hangjinqi deposit was affected by two distinct types of ore–bearing fluids: low–salinity meteoric waters and high–salinity hydrothermal fluids. The meteoric fluids event began at 97 ± 5 Ma with the titling of the northern Ordos Basin and the uplift of the Hetao region to the north. Hydrothermal U mineralization occurred since 39 ± 2 Ma with the rifting of the Hetao graben. Thus, the previous biogenic model for the U mineralization should be modified in the uraniferous region of the north Ordos Basin. 相似文献
14.
15.
U–Pb detrital zircon geochronology has been used to identify provenance and document sediment delivery systems during the deposition of the early Late Triassic Yanchang Formation in the south Ordos Basin. Two outcrop samples of the Yanchang Formation were collected from the southern and southwestern basin margin respectively. U–Pb detrital zircon geochronology of 158 single grains (out of 258 analyzed grains) shows that there are six distinct age populations, 250–300 Ma, 320–380 Ma, 380–420 Ma, 420–500 Ma, 1.7–2.1 Ga, and 2.3–2.6 Ga. The majority of grains with the two oldest age populations are interpreted as recycled from previous sediments. Multiple sources match the Paleozoic age populations of 380–420 and 420–500 Ma, including the Qilian–Qaidam terranes and the North Qilian orogenic belt to the west, and the Qinling orogenic belt to the south. However, the fact that both samples do not have the Neoproterozoic age populations, which are ubiquitous in these above source areas, suggests that the Late Triassic Yanchang Formation in the south Ordos Basin was not derived from the Qilian–Qaidam terranes, the North Qilian orogenic belt, and the Qinling orogenic belt. Very similar age distribution between the Proterozoic to Paleozoic sedimentary rocks and the early Late Triassic Yanchang Formation in the south Ordos Basin suggests that it was most likely recycled from previous sedimentary rocks from the North China block instead of sediments directly from two basin marginal deformation belts. 相似文献
16.
《Proceedings of the Geologists' Association. Geologists' Association》2021,132(6):688-701
The lagoonal and shallow marine sediments of the Penarth Group in the UK span the Triassic–Jurassic boundary. These sediments contain several disturbed levels with soft sediment deformations (SSDs), such as synsedimentary faults, injective domes, recumbent folds and slumps that are recognised in most basins from SW England and South Wales to NW Northern Ireland. Field observations, notably the close link of the SSDs to active faults, attest an earthquake origin of the SSDs. Fluids, faults, overpressure and lithology guided the style of the SSDs and their distribution in the sedimentary sections. Analysis of the directional data relating to SSDs in each disturbed level shows preferred orientations of deformation, which correspond to the local state of stress at the time. We favour a series of earthquakes, rather than a single mega-event as a trigger of the observed features. The active local extensional tectonic context was driven by the opening of the Permo-Triassic basins in Western Europe. The data from the SSDs in the UK suggest the development of a multi-directional, mosaic-style extensional context to occur during this early phase of the break-up of Pangea. Our integrated tectonic/sedimentary study suggests that directional data from faults, injective domes, recumbent folds and slumps preserved in sediments are reliable to reconstruct past seismic activity and basin geodynamics. 相似文献
17.
18.
In this paper we present new zircon U–Pb ages, whole-rock major and trace element analyses, and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture. Our aim is to constrain the Early Permian–Late Triassic tectonic evolution of the region. Zircons from the magmatic rocks of the Tuotuohe region are euhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios(0.4–4.6), indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are 281 ± 1 Ma, 258 ± 1 Ma, 244 ± 1 Ma, and 216 ± 1 Ma, which indicate magmatism in the Early Permian–Late Triassic. A diorite from Bashihubei(BSHN) has SiO2 = 57.18–59.97 wt%, Al2O3 = 15.70–16.53 wt%, and total alkalis(Na2O + K2O) = 4.46–6.34 wt%, typical of calc-alkaline and metaluminous series. A gabbro from Bashibadaoban(BSBDB) belongs to the alkaline series, and is poor in SiO2(45.46–54.03 wt%) but rich in Al2O3(16.19–17.39 wt%) and total alkalis(Na2O + K2O = 5.48–6.26 wt%). The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93 wt%), Mg# values of 43 to 52, and low Cr and Ni contents(8.07–33.6 ppm and 4.41–14.2 ppm, respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U, and Ce/Pb ratios(1.3–9.6, 0.2–0.8, and 0.1–18.1, respectively), and their initial Hf isotopic ratios range from +9.6 to +16.9(BSHN diorite) and +6.5 to +12.6(BSBDB gabbro), suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–Late Triassic: oceanic crust subduction before the Early Permian, continental collision during the Early–Middle Triassic, and post-collisional extension from the Late Triassic. 相似文献
19.
Akhtar R. Mir V. Balaram Javid A. Ganai Shamim A. Dar A. Keshav Krishna 《中国地球化学学报》2016,35(4):428-436
The geochemical characteristics of two sections—the Permian–Triassic boundary (PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir, India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting. These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si2O versus K2O/Na2O tectonic setting diagram. 相似文献
20.
The Qinling Orogen separating the North China plate from the Yangtze plate is a key area for understanding the timing and process of aggregation between the two plates. Two competing and highly contrasting tectonic models currently exist to explain the timing and nature of collision; one advocates a Devonian continental collision while the other favors a Triassic collision. The Wuguan Complex, between the early Paleozoic North Qinling and the Mesozoic South Qinling terranes, can provide important constraints on the late Paleozoic evolutionary processes of the Qinling Orogen. Metamorphosed sedimentary rock of the Wuguan Complex have a detrital zircon age spectrum with two major peaks at 453 Ma and 800 Ma, several minor age populations of 350–430 Ma and 1000–2868 Ma, and a youngest weighted mean age of 358 ± 3 Ma, indicating a mixed source from the North Qinling terrane. The recrystallized zircons yield a weighted mean age of 333 ± 2 Ma, representing the metamorphic age. Geochemical analyses imply that the sedimentary rocks were originally deposited in an active continental margin dominated by an acidic-arc source with a subordinate mafic-ultramafic source. The youngest population of detrital zircons (358 Ma) suggests that the Wuguan Complex developed as forearc basin along the southern accreted margin of the North Qinling terrane during the early Carboniferous, whereas the ca. 520–460 Ma mafic rocks with E-MORB, N-MORB, OIB or island arc basalt signatures probably derived from the Danfeng Group. In combination with regional data, we suggest that the depositional age of the Wuguan Complex is ca. 389–330 Ma, but it was subsequently incorporated into tectonic mélange by the northward subduction of the Paleo-Qinling Ocean. A long-lived southward-facing subduction-accretionary system in front of the North Qinling terrane probably lasted until at least the early Carboniferous. 相似文献