首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The former stratigraphic chart of the Cambrian in the Turukhansk–Irkutsk–Olekma region of the Siberian Platform was compiled in 1986 and approved in 1988. Large amounts of data were obtained from new wells drilled in the western and northern parts of the region during the preceding 20 years. Modifications necessitated by new data entail an indefinitely continuous series of revised facies zonation, recognition of new facies areas, regions and zone, as well as definition of a regional early Mayan stratigraphic hiatus. A new local stratigraphic division is the Olenchima Member (base of the Evenk Formation) underlain by a hiatus. The term Kochumdek Formation is no longer used in the Bakhta region and its lithologically distinct subformations (Yasenga, Moktakon, Mara, and Abakun) were raised to formation rank. The Olenchima Formation is no longer used in the Baikit zone; but instead, the Litvintsevo Formation was established here by correlation.  相似文献   

3.
International Journal of Earth Sciences - The volcanism hosted by the Ediacaran–Terreneuvian Canaveilles Group of the Eastern Pyrenees displays two distinct geochemical affinities: (1)...  相似文献   

4.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   

5.
The stratigraphic subdivisions of the Paleogene included in the updated regional stratigraphic scheme of the Ulyanovsk-Syzran facial district with a wide development of biosiliceous deposits, are described and paleontologically characterized. The biostratigraphic subdivision of the reference sections using diatoms and dinocysts is discussed. The recently recognized stratigraphic units, Smyshlyaevka and Karanino within the Kamyshin (Upper Paleocene) and Proleyka (Lower Eocene) regional stages are described.  相似文献   

6.
International Journal of Earth Sciences - The presence of the Bashkirian–Moscovian (lower Pennsylvanian) sequence with mixed siliciclastics and fossil-rich carbonates has long been known from...  相似文献   

7.
Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, δ13C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian–early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak δ13C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the δ13C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the δ13C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first δ13C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous δ13C shift, but delayed effects of OAE2 dependent on water depth.  相似文献   

8.
Total organic carbon content (TOC), trace element and platinum-group element (PGE) concentrations were determined in the black shales of the Lower Cambrian Niutitang Formation in the Nayong area, Guizhou Province, South China, in order to study the polymetallic Ni–Mo–PGE mineralization. The results demonstrate that numerous elements are enriched in the polymetallic ores compared to those of the nearby black shale, particularly Ni, Mo, Zn, TOC and total PGE, which can reach up to 7.03 wt.%, 8.49 wt.%, 11.7 wt.%, 11.5 wt.% and 943 ppb, respectively. The elemental enrichment distribution patterns are similar to those in the Zunyi and Zhangjiajie areas except that the Nayong location is exceptionally enriched in Zn. Whereas positive correlations are observed between the ore elements of the polymetallic ores, no such correlations are observed in the black shale. These positively correlated metallic elements are classified into three groups: Co–Ni–Cu–PGE, Zn–Cd–Pb and Mo–Tl–TOC. The geological and geochemical features of these elements suggest that Proterozoic and Early Palaeozoic mafic and ultramafic rocks, dolomites and/or Pb–Zn deposits of the Neoproterozoic Dengying Formation and seawater could be the principal sources for Co–Ni–Cu–PGE, Zn–Cd–Pb, and Mo–Tl–TOC, respectively. Furthermore, the chondrite-normalized patterns of PGEs with Pd/Pt, Pd/Ir and Pt/Ir indicate that PGE enrichment of the polymetallic ores is most likely related to hydrothermal processes associated with the mafic rocks. In contrast, PGE enrichment in the black shale resembles that of the marine oil shale with terrigenous and seawater contributions. Our investigations of TOC, trace elements and PGE geochemistry suggest that multiple sources along with submarine hydrothermal and biological contributions might be responsible for the formation of the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation across southern China.  相似文献   

9.
Barforms of mesotidal to macrotidal fluvial–tidal transitions, regardless of fluvial-discharge, are currently thought to display a sedimentary architecture dominated by tidal signatures. Due to the scarcity of observations from modern mesotidal fluvial–tidal transitions, especially those of multi-channelled large-rivers (mean annual discharge ≥7000 m3 s−1 and peak discharges ≥15 000 m3 s−1) with mid-channel bars, this concept remains unproven. The present study analyses data produced by a combination of high-resolution ground penetrating radar and coupled shallow vibracores (<5 m depth), collected from modern fluvial–tidal mid-channel bars of the mesotidal multi-channelled Lower Columbia River, Washington/Oregon, USA, which can experience peak discharges ≥18 000 m3 s−1. These data were used alongside time-sequenced aerial imagery to characterize the spatio-temporal sedimentological evolution of these barforms in singular flows or combined flows consisting of river, tidal and/or wind-wave oscillatory, current components operating in unique fluvial–tidal transition regimes. Results indicate that ca 75% of the Lower Columbia River fluvial–tidal transition produces braid-bars with basal to bar-top sedimentological architectures that are indistinguishable from fluvial-only braid-bars recorded in the literature. Barform stratal characteristics within the fluvial–tidal transitions of mesotidal large-rivers are therefore more likely to be dominated by downstream-oriented currents. Furthermore, a new style of low-angle (<5°) inclined heterolithic stratification found in bar-top accretion-sets within upper-mixed tidal–fluvial regime braid-bars is observed. This common stratification is created by combined-flows characterized by intrabasinal wind-wave oscillatory-currents and bidirectional tidal-currents. This inclined heterolithic stratification marks the initial downstream fluvial–tidal crossover point from Lower Columbia River up-dip fully-fluvial braid-bar architectures, to those possessing bar-top facies produced by the hydraulic-sedimentation response of combined intrabasinal wind-wave and tidal influence. When preserved, this form of mid-channel bar inclined heterolithic stratification provides a unique sedimentological signature of multi-channelled fluvial–tidal transitions that possess an open-water lower basin with intrabasinal wind-waves.  相似文献   

10.
The stratigraphic section of the Upper Triassic–Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies.  相似文献   

11.
In the transformation from tidal systems to freshwater coastal landscapes, plants act as eco-engineering species that reduce hydrodynamics and trap sediment, but nature and timing of the mechanisms of land creation along estuaries remains unclear. This article focuses on the Old Rhine estuary (The Netherlands) to show the importance of vegetation in coastal landscape evolution, predominantly regarding tidal basin filling and overbank morphology. This estuary hosted the main outflow channel of the river Rhine between ca 6500 to 2000 cal bp , and was constrained by peat during most of its existence. This study reconstructs its geological evolution, by correlating newly integrated geological data and new field records to varying conditions. Numerical modelling was performed to test the inferred mechanisms. It was found that floodbasin vegetation and resulting organic accumulation strongly accelerated back-barrier infill, by minimizing tidal influence. After tidal and wave transport had already sufficiently filled the back-barrier basin, reed rapidly expanded from its edges under brackish conditions, as shown by diatom analysis and datings. Reed growth provided a positive infilling feedback by reducing tidal flow and tidal prism, accelerating basin infilling. New radiocarbon dates show that large-scale crevassing along the Old Rhine River – driven by tidal backwater effect – only started as nutrient-rich river water transformed the floodbasin into an Alder carr in a next phase of estuary evolution. Such less dense vegetation promotes crevassing as sediments are more easily transported into the floodbasin. As river discharge increased and estuary mouth infilling progressed, crevasse activity diminished around 3800 to 3000 cal bp , likely due to a reduced tidal backwater effect. The insights from this data-rich Holocene study showcase the dominant role that vegetation may have in the long-term evolution of coastal wetlands. It provides clues for effective use of vegetation in vulnerable wetland landscapes to steer sedimentation patterns to strategically adapt to rising water levels.  相似文献   

12.
Doklady Earth Sciences - The morphology of archaeocyaths from the Oldynda Formation of the Uda–Vitim lithofacial zone and the Aikta Formation of the Birami–Yanguda Zone of West...  相似文献   

13.
14.
ABSTRACT

The unconformity between the Ediacaran and Cambrian and its associated palaeokarst was well preserved within the Aksu area of the northwestern margin of the Tarim Block and provides new insights into the sedimentary evolution of the Tarim Basin during the Ediacaran–Cambrian transition. In this contribution, the typical palaeokarst features in the uppermost Ediacaran dolostones at nine outcrops in the Aksu area were documented, including palaeocaves, cave-sediment infills, solution vugs, and pores. Large-scale collapsed breccia assemblages in palaeocaves indicate that strong karstification had occurred in the south belt from the Xiaoerburak to Kule sections. Karst characterized by small-scale caves and solution vugs at the Chigebrak and Kakebashi sections suggests that the karstification in the north belt was not stronger than that in the south belt. Whereas sparse solution pores and small vugs can only be observed at the Sugetbrak and Yuermeinak sections, demonstrating that the karstification was weak in the middle belt. Combined with the thickness of sediments in the base of the Cambrian which subsequently overlay on the Ediacaran–Cambrian unconformity, it is speculated that the palaeo-upland was probably located in the middle belt from the Sugetbrak to Yuermeinak sections and the slope was developed in the south and north belts during the Ediacaran–Cambrian transition. The palaeokarst documented in the uppermost Ediacaran dolostones in the Aksu area illustrates an important sedimentary hiatus of the Tarim Block during the Ediacaran–Cambrian transition, which might be due to the sea-level fall at the end of the Ediacaran.  相似文献   

15.
Saturated hydrocarbon biomarkers were studied in bitumens from organic matter (OM) in the Lower and Middle Cambrian Kuonamka Complex in the Lena–Amga interfluve of East Siberia. Their contents and distribution were analyzed. It was established that OM of siliceous and carbonate rocks from the lower part of the sequence differs from OM of overlying mainly mixed siliceous–carbonate rocks in terms of distribution of alkanes, steranes, tricyclanes, hopanes, and ratios of their homologs. It was concluded that the peculiarities of molecular composition of OM in the rocks are related to the biochemistry of microorganism communities, the remains of which were accumulated in sediments of Cambrian sea. It is possible that the microbiota changed its composition in response to a sharp change of sedimentation settings, which follows from biomarker proxies. It is suggested that sediments in the lower part of the sequence were formed under conditions of H2S contamination. Catagenesis of OM and contribution of the Lower and Middle Cambrian potentially oil-generating rocks in naphthide generation on the northern slope of the Aldan anteclise are discussed.  相似文献   

16.
Changes in water chemistry along the High Arctic fluvial–lacustrine system located in Wedel Jarlsberg Land in the SW Spitsbergen (Svalbard) were investigated during the summer season of 2010 and 2011. The newly formed river–lake system consists of three lakes connected with the Brattegg River. The first bathymetric measurements of these lakes were made by the authors in 2010. The Brattegg River catchment represents a partly glaciered Arctic water system. The studied lakes are characterized by low mineralization and temperature of water. The value of the electrolytic conductivity (EC) ranges from 30.2 to 50.5 μS cm?1 and the temperature of surface water from 1.5 to 7.8 °C. The temperature increase takes place downstream starting from Upper Lake to the outflow from Myrktjørna Lake. The waters of lakes have higher temperatures than the stream. The predominant ions are HCO3 ? (up to 16.5 mg L?1), Cl? (6.66–8.53 mg L?1), Ca2+ (2.40–4.45 mg L?1) and Na+ (2.65–3.36 mg L?1). The highest values of ammonium and DOC found in the lowest Myrktjørna Lake seem to be related to the presence of aquatic organisms and also birds. From the group of 10 analyzed microelements, increased concentrations of aluminum, up to almost 500 μg L?1, are present in the lakes’ water. Water isotopic composition ranges for δ18O and δ2H, from ?10.6 to ?10.9‰ and from ?70.8 to ?72.3‰, respectively. The vertical zonality of lake waters is manifested in a decrease in the temperature and increase in EC and chemical elements concentrations.  相似文献   

17.
A prograde pressure–temperature (P–T) path is estimated for pelitic schists from the latest Precambrian Kokchetav ultrahigh-pressure massif, Kazakhstan, using compositional zoning and mineral inclusions in coarse-grained and inclusion-rich garnets. Ti-bearing inclusions are abundant in garnet and display a zonal distribution. Ilmenite occurs in the inner-core, where most of it makes a composite inclusion with rutile, whereas monomineralic rutile occurs in the outer-core to mantle domains. In the rim region both ilmenite and rutile are present, although in small amounts. Application of the ilmenite-garnet thermometer yields a systematic temperature increase towards rim from 500 to 750 °C. The pressure-sensitive reaction: 3 Fe-Ilm (in Ilm) + Ky + 2 Qtz = 3 Rt + Alm (in Grt) yielded pressures of 1.2–1.3 GPa for the outer-core inclusions.A petrogenetic grid in the K2O–CaO–FeO–MgO–Al2O3–SiO2–H2O model system was used to estimate the equilibrium compositions of the garnet. The change of the grossular component along the model P–T path expected from the forward modelling is close to the observed compositional profile of the outer-core to rim domains. No constraint is available from thermobarometry in the inner-core; however, the forward modelling of garnet zoning provides information on the early stage of the P–T path during the garnet growth.The estimated P–T path is counter-clockwise in the prograde stage with a steep bend at around 700 °C and 1.2–1.5 GPa. This is similar to the metamorphic P–T gradient of the Kokchetav massif. This result contrasts markedly with the traditional clockwise P–T path in many collisional metamorphic terranes, and is regarded to represent a subduction geotherm at the Precambrian–Cambrian boundary. The P–T path proposed in this study also supports the models for the recovery of the “snowball Earth” from late-Proterozoic glaciation through effect of water in the solid Earth mantle.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号