首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The modern Severnaya Dvina and Mezen river systems in the Arkhangelsk region, NW Russia, are located within extensive palaeovalley systems. The palaeovalleys form depressions in bedrock and have controlled the drainage systems in the area at least since the Last Interglacial. Vertically stacked marine to fluvial sediments reflect deposition during fluctuating climate and sea levels.A compilation of lithostratigraphical data collected during the last decade has been coupled with bedrock topography and geomorphology from satellite images in order to describe the valley fill architecture for the two valley systems. Each system has been divided into a number of depositional units (storeys) separated by incision/non-deposition and used to investigate the timing of aggradational versus incisional phases. Time constraints for each phase are provided by optically stimulated luminescence (OSL) ages, and aggradation and incision are linked to independent records of climate and sea level change.The pattern of aggradation and erosion is regional and primarily driven by episodes of increasing and decreasing sediment supply. Aggradation is correlated to times of deglaciation with high sediment supply from the ice margin, release of sediment from ice-dammed lakes and low vegetation and degradation of permafrost on the flood plain. Incision is related to cold intervals with low sediment supply, delayed incision due to isostatic uplift and drainage of ice-dammed lakes. Relative sea level change controls the distribution of marine deposits, which show significant regional variations due to variable isostatic response across the region. Sea level change plays a limited role for fluvial aggradation/incision in the study area.  相似文献   

2.
We report new mapping, soils, survey, and geochronologic (luminescence, U-series, and cosmogenic-nuclide) data from Pleistocene deposits in the arid setting of eastern Grand Canyon. The result is a stratigraphic framework of inset fill gravels and associated terraces that provide a record of the responses of hillslopes, tributary streams, and the Colorado River to the last 400 kyr of glacial–interglacial climate change. The best-preserved last 80 kyr of this record indicates a stratigraphic–chronologic disconnect between both deposition and incision along the Colorado River versus along the trunks of local tributaries. For example, the Colorado River finished aggrading and had already begun incising before the main pulse of aggradation in the trunks of local catchments during Marine Isotope Stage 3, and then tributary incision followed during the millennial-scale fluctuations of the last glacial epoch, potentially concurrent with mainstem aggradation. The mainstem record appears to broadly correlate with regional paleoclimate and upstream geomorphic records and thus may be responding to climatic–hydrologic changes in its mountain headwaters, with aggradation beginning during full-glacial times and continuing into subsequent interglacials. The contrasting lag time in responses of the dryland catchments within Grand Canyon may be largely a function of the weathering-limited nature of hillslope sediment supply.  相似文献   

3.
Wind gaps in actively growing mountain ranges are unique geomorphological features testifying to the competition between tectonics and fluvial incision. Although it is clear that these landforms reflect the defeat of rivers during sustained rock uplift, the role of climate changes in their formation has never been explored. Here, we use a coupled tectonics–landscape evolution model to show that temporal changes in precipitation rate exert an important control on wind gap formation. In models with a constant precipitation rate, rivers flowing across a growing range are either defeated at an early stage or they abandon their valleys very late, if at all. If precipitation varies, wind gaps form mostly c. 100–200 ka after a transition to drier conditions because of sediment aggradation upstream of the range. Our results suggest that the Pliocene–Quaternary aridification of Central Asia contributed to wind gap formation in active mountain ranges in the foreland of northeastern Tibet.  相似文献   

4.
Detailed fieldwork and new extensive 14C dating of residual channel infillings provide data for the reconstruction of the Late‐glacial channel downcutting and incision history of the Venlo–Boxmeer lower reach of the River Meuse (= Maas) in the southern Netherlands. Within a period of 500–1300 yr after Late‐glacial climatic amelioration, the Meuse responded to increased discharges and decreased sediment supply by adjusting the width/depth ratio of its channels. Two main phases of channel downcutting are followed by two main phases of floodplain lowering and narrowing, indicating net floodplain degradation by the fluvial system as a non‐linear response to Late‐glacial and Early Holocene climate change. Some 1300 yr after initial late‐glacial warming, channels downcut rapidly during the Early Bølling (13.3–12.5 kyr BP) and adopted a high‐sinuosity meandering style. Channel downcutting paused around 11.9 kyr BP, possibly in response to rising groundwater levels and/or the Older Dryas cooling event. Between 11.9 and 11.3 kyr BP a new floodplain was formed. Then, lateral erosion took place and initiated a first phase of 2.6 m floodplain lowering during the Late Allerød. Gradual climate deterioration during the Allerød progressively broke up soils and vegetation cover, from 11.3 to 10.9 kyr BP. The Meuse gradually adjusted to an increased ratio of sediment supply over transport capacity through higher width/depth ratios. Main channels became shallower and adopted a low‐sinuosity pattern, finally culminating in a braided river system during the Younger Dryas. The final Holocene warming resulted, within 500 yr, in renewed rapid channel downcutting by a single low‐sinuosity channel during the Early Preboreal, followed by a second phase of 1.8–2.8 m floodplain lowering. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Palaeocompetence analysis and palaeodischarge estimation techniques are applied to a late Pleistocene–early Holocene gravel terrace in the Mahi River Basin, western India. Terrace sedimentology, comprising gravels overlain by sand lithofacies suggests a gradual change in palaeohydrological conditions marking a switch from braided to meandering fluvial styles. The discharge values for the gravel bedforms based on the clast size and the cross bed set thickness are estimated between ∼150–180 m3 s−1 comparable with the present day observed values albeit with a much higher competence. Results indicate that fluvial aggradation occurred under low discharge conditions with intermittent high discharge events depositing longitudinal gravel bars. The incision of these gravel bars and the formation of terraces can be attributed to the higher discharge regime post 9.2 ka. The study further indicates that whereas the aggradation of the gravel terrace during the early Holocene was controlled by the large sediment influx, the incision that followed was in response to the increase in the discharge and competence of the river flow.  相似文献   

6.
This study describes changes to the proglacial drainage network of Skaftafellsjökull, Iceland from 1998 to 2011. Proglacial landscapes are highly sensitive to glacier retreat, and the retreat of glaciers around the world has accelerated since the mid‐1990s. Skaftafellsjökull has retreated at an average rate of 53 m per year since 1999. From 1999 to 2003, the river incised and formed a sequence of now abandoned channels and fluvial terraces extending ~1 km downstream from the glacier. Retreat of the glacier from an over‐deepened ice‐contact slope meant that there was a positive correlation between the distance of glacier retreat and the amount of fluvial incision. Incision was episodic, occurring annually in response to drainage reactivation and reorganization. On an annual basis, the rate of retreat is moderately negatively correlated with the rate of incision. This is partly because the ice‐contact slope decreases away from the position of maximum glacier extent, and also because more sediment is released with faster retreat, counteracting the effect of retreat down an ice‐contact slope. From 2003 onwards, proximal terrace formation ceased, as a proglacial lake became established. Downstream of the lake outlet further incision deepened the channel, with most change occurring during a flood in 2006, where incision in the upstream confined reach was accompanied by downstream aggradation and terrace formation. These observations indicate that proglacial changes in response to glacier retreat are a result of the interactions of river channel incision and terrace formation, aggradation, lake development, and flooding, which together control river channel changes, sediment redistribution and sandur stratigraphy.  相似文献   

7.
The area of coastal rivers with a combination of fluvial, tidal and wave processes is defined as the fluvial to marine transition zone and can extend up to several hundreds of kilometres upstream of the river mouth. The aim of this study is to improve the understanding of sediment distribution and depositional processes along the fluvial to marine transition zone using a comprehensive dataset of channel bed sediment samples collected from the Mekong River delta. Six sediment types were identified and were interpreted to reflect the combined action of fluvial and marine processes. Based on sediment‐type associations, the Mekong fluvial to marine transition zone could be subdivided into an upstream tract and a downstream tract; the boundary between these two tracts is identified 80 to 100 km upstream of the river mouth. The upstream tract is characterized by gravelly sand and sand and occasional heterolithic rhythmites, suggesting bed‐load supply and deposition mainly controlled by fluvial processes with subordinate tidal influence. The downstream tract is characterized by heterolithic rhythmites with subordinate sand and mud, suggesting suspended‐load supply and deposition mainly controlled by tidal processes with subordinate fluvial influence. Sediment distributions during wet and dry seasons suggest significant seasonal changes in sediment dynamic and depositional processes along the fluvial to marine transition zone. The upstream tract shows strong fluvial depositional processes with subordinate tidal influence during the wet season and no deposition with weak fluvial and tidal processes during the dry season. The downstream tract shows strong coexisting fluvial and tidal depositional processes during the wet season and strong tidal depositional processes with negligible fluvial influence during the dry season. Turbidity maxima are present along the downstream tract of the fluvial to marine transition zone during both wet and dry seasons and are driven by a combination of fluvial, tidal and wave processes.  相似文献   

8.
Törnqvist 《地学学报》1998,10(1):11-15
Fluvial longitudinal profiles reconstructed from abandoned floodplains contain significant evidence about the role of relative sea level vs. climatic and tectonic controls on depositional systems. Two Weichselian floodplain surfaces that occur as terraces updip of the hinge zone of the Rhine–Meuse system have recently been mapped beneath the Holocene Rhine–Meuse Delta (The Netherlands). Their vertical offset is several metres in the upstream area and decreases to only 0.4 m in the central part of the delta. The older and higher of the two floodplain surfaces is generally assumed to have been formed around the Last Glacial Maximum, whereas the younger dates to the Younger Dryas, following a phase of climatically induced fluvial incision during the Bølling-Allerød. The downstream convergence of these two floodplain surfaces may be related to the relative rise of sea level, forcing the Rhine–Meuse system to become graded to a higher base level during the Younger Dryas. The upper Weichselian Rhine–Meuse system then provides an example of a basin-marginal fluvial system that responds, in terms of its longitudinal profile, to the combined effects of upstream control (primarily climate change affecting water and sediment flux from the hinterland) and downstream control (glacio-eustatically driven relative sea-level change). This new evidence may therefore revitalize the presently unfashionable concept of relative sea-level control penetrating many hundreds of kilometres inland.  相似文献   

9.
The Weichselian Late Pleniglacial, Lateglacial and Holocene fluvial history of the middle Tisza valley in Hungary has been compared with other river systems in West and Central Europe, enabling us to define local and regional forcing factors in fluvial system change. Four Weichselian to Holocene floodplain generations, differing in palaeochannel characteristics and elevation, were defined by geomorphological analysis. Coring transects enabled the construction of the channel geometry and fluvial architecture. Pollen analysis of the fine-grained deposits has determined the vegetation development over time and, for the first time, a bio(chrono)stratigraphic framework for the changes in the fluvial system. Radiocarbon dating has provided an absolute chronology; however, the results are problematic due to the partly reworked character of the organic material in the loamy sediments. During the Late Pleniglacial, aggradation by a braided precursor system of the Tisza and local deflation and dune formation took place in a steppe or open coniferous forest landscape. A channel pattern change from braided to large-scale meandering and gradual incision occurred during the Late Pleniglacial or start of the Lateglacial, due to climate warming and climate-related boreal forest development, leading to lower stream power and lower sediment supply, although bank-full discharges were still high. Alternatively, this fluvial change might reflect the tectonically induced avulsion of the River Tisza into the area. The climatic deterioration of the Younger Dryas Stadial, frequently registered by fluvial system changes along the North Atlantic margin, is not reflected in the middle Tisza valley and meandering persisted. The Lateglacial to Holocene climatic warming resulted in the growth of deciduous forest and channel incision and a prominent terrace scarp developed. The Holocene floodplain was formed by laterally migrating smaller meandering channels reflecting lower bank-full discharges. Intra-Holocene river changes have not been observed.  相似文献   

10.
The present study aims to explain the spatial and temporal variability in phases of aggradation/incision in response to changes in climate and seismicity during the late Quaternary in the Alaknanda River valley (a major tributary of the river Ganges or Ganga). Geomorphology, stratigraphy and optical dating of the fluvial sediment reveal that the oldest fluvial landforms preserved in the south of the Main Central Thrust are debris flow terraces developed during the early part of pluvial Marine Isotopic Stage 3. Following this, a period of accelerated incision/erosion owing to an increase in uplift rate and more intense rainfall occurred. In the Lesser Himalaya, three phases of valley fill aggradation around 26 ± 3 ka, 18 ± 2 ka and 15 ± 1 ka and 8 ± 1 ka occurred in response to changes in monsoon intensity and sediment flux. The last phase was regionally extensive and corresponds to a strengthening of the early Holocene Indian Summer Monsoon. A gradual decline in the monsoon strength after 8 ± 1 ka resulted in reduced fluvial discharge and lower sediment transport capacity of the Alaknanda River, leading to valley fill incision and the development of terraces. The study suggests that fluvial dynamics in the Alaknanda valley were modulated by monsoon variability and the role of tectonics was subordinate, limited to providing accommodation space and post‐deposition modification of the fluvial landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Widespread empirical evidence suggests that extraterrestrial forcing influences the Earth’s climate, but how this could occur remains unclear. Here we describe a new approach to this problem that unifies orbital, solar and lunar forcing based on their common control of the Earth’s latitudinal insolation gradient (LIG). The LIG influences the climate system through differential solar heating between the tropics and the poles that gives rise to the latitudinal temperature gradient (LTG), which drives the Earth’s atmospheric and (wind driven) ocean circulation. We use spectral analysis of recent changes in the Earth’s LTG to support earlier work on orbital timescales (Davis and Brewer, 2009) that suggests the climate system may be unusually sensitive to changes in the LIG. Identification of LIG forcing of the LTG is possible because the LIG varies according to seasonally specific periodicities based on obliquity in summer (41 kyr orbital and 18.6 yr lunar cycle), and precession (21 kyr orbital cycle) and total solar irradiance (11 yr solar cycle) in winter. We analyse changes in the Northern Hemisphere LTG over the last 120 years and find significant (99%) peaks in spectral frequencies corresponding to 11 years in winter and 18.6 years in summer, consistent with LIG forcing. The cross-seasonal and multi-frequency nature of the LIG signal, and the diffuse effect of the LTG driver on the climate system may account for the complexity of the response to extraterrestrial forcing as seen throughout the climatic record. This hypersensitivity of the LTG to the LIG appears poorly reproduced in climate models, but would be consistent with the controversial theory that the LTG is finely balanced to maximise entropy.  相似文献   

12.
Well-preserved Holocene terraces along the South Fork Payette River in central Idaho provide a record of fluvial system behavior in a steep mountain watershed characterized by weathered and erodible Idaho Batholith granitic rocks. Terrace deposit ages were provided by 14C dating of charcoal fragments and optically stimulated luminescence (OSL) dating of sandy sediments. Along with pairing of many terrace tread heights, these data indicate episodic downcutting during the Holocene, with a mean incision rate of ~0.9 m/ka from ~7 ka to present. Prior to 7 ka, the river incised to within~3 m of current bankfull, but then aggraded by ~5 m over at least a ~10 km-long reach in an episode centered ~7–6 ka. Aggradation may relate to (1) increased hillslope sediment input from landslides and debris flows in steep tributary basins with abundant grussified granitic bedrock, (2) possible local landslide-damming of the channel, (3) decreased peak discharge, or (4) a combination of these factors. Middle Holocene channel aggradation ca. 7–6 ka corresponds with a period of prolonged and widespread aridity in the northern Rocky Mountains. Between ~5 and 1.3 ka, the river aggraded slightly and then remained stable, forming a prominent terrace tread at ~3 m above current bankfull. Modest aggradation to vertical stability of the South Fork Payette River at the 1.5 m terrace level ~1.0–0.7 ka corresponds with large fire-related debris flows in tributaries during Medieval droughts. Three intervals of incision (~5.5–5 ka, 1.3–1.0 ka and 0.5 ka) correspond with frequent but small fire-related sedimentation events and generally cooler, wetter conditions suggesting increased snowmelt runoff discharges. Other possible drivers of channel incision include an increase in stochastic or climate-modulated large storms and floods and a reduction in delivery of hillslope sediment to the channel. Aggradation is more confidently tied to climate through increases in hillslope sediment delivery and (or) decreased stream power, both likely related to warmer, drier conditions (including high-severity fires) that reduce snowmelt and decrease vegetation cover on steep slopes. Thus, the Holocene terraces of the South Fork Payette River do not reflect simple stepwise incision with periods of vertical stability and lateral migration, but record substantial episodes of aggradation as well. We infer that increases in hillslope erosion and mass movements combined with reduced discharges during prolonged droughts episodically reverse the post-glacial trend of downcutting, in particular during the middle Holocene. The present bedrock-dominated channel implies a strong tendency toward incision in the late Holocene.  相似文献   

13.
《Quaternary Science Reviews》2007,26(22-24):2937-2957
We present a brief synthesis of the Quaternary fluvial record in the Lower Tagus Basin (central Portugal), concentrating on factors controlling infill and incision. The Holocene part of the record forms the focus of this paper and guides the questioning of the basic assumptions of the established Quaternary fluvial evolution model, in particular the link between sea-level change and fluvial incision-deposition. We suggest that several incision-aggradation phases may have occurred during glacial periods. Major aggradation events may overlap with cold episodes, while incision appears to concentrate on the warming limb of climate transitions. The complex stratigraphy of the Quaternary record in the Lower Tagus valley is influenced by repeated base-level and climate changes.This paper submits the first chronostratigraphic framework for valley fill deposits in the Lower Tagus area. Sea-level rise forced aggradation and controlled deposition of the fine-grained sedimentary wedge underlying the low-gradient Lower Tagus floodplain. Investigations have focused on the lower Muge tributary, where rapidly aggrading estuarine and fluvial environments were abruptly established (∼8150 cal BP) as sea level rose. Base level at the valley mouth controlled the upstream extent of the fine-grained backfill. Tidal environments disappeared abruptly (∼5800 cal BP) when the open estuary at the Muge confluence was infilled by the Tagus River. The decrease and final still stand of sea-level rise led to floodplain stabilisation with peat (∼6400–5200 cal BP) and soil formation (∼5200–2200 cal BP). Localised renewed sedimentation (∼2200–200 cal BP) is linked to human activity.  相似文献   

14.
《Sedimentology》2018,65(2):492-516
Pre‐vegetation fluvial channels have long been considered predominantly sheet‐like in geometry, owing to hydraulic sections that rapidly widened rather than incise during floods. This motif has been paralleled to that of modern dryland rivers subject to sharp discharge fluctuations during ephemeral floods. However, a number of Precambrian fluvial successions have been recently appraised as the product of deep‐channelled systems characterized by relatively stable – probably perennial – discharge regimes. One such example is the ca 1·0 Ga Applecross Formation, part of the well‐studied Torridon Group of Scotland. To contribute to this debate and to provide refined morphodynamic models for the Applecross Formation, this article presents an integration of three‐dimensional photogrammetry and outcrop sedimentology applied to key exposures at Stoer Peninsula, north‐western Scottish Highlands. Analysis of selected sandbodies reveals that high‐relief fluvial sand bars, both mid‐channel and bank‐attached, evolved within deep, braided‐channel belts. These bars grew through complex mechanisms of accretion and reactivation related to different flood stages: upstream and downstream accretion probably occurred during waning‐flood stages characterized by high hydrograph levels and abundant sediment availability; lateral accretion took place during later waning‐flood stages, and it was associated in some cases with helical recirculation and increase in bend sinuosity. Overall, the depicted morphodynamics are consistent with prolonged flood events that cannot be reconciled with sharply fluctuating discharge regimes. Critical comparisons between the internal geometry of the studied bars and modern counterparts corroborate the findings herein. Thus, this study recommends stricter comparisons between the products of modern braided channels and Precambrian fluvial rock records featuring thick and well‐developed bar forms.  相似文献   

15.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

16.
About 5400 cal yr BP, a large landslide formed a > 400-m-tall dam in the upper Marsyandi River, central Nepal. The resulting lacustrine and deltaic deposits stretched > 7 km upstream, reaching a thickness of 120 m. 14C dating of 7 wood fragments reveals that the aggradation and subsequent incision occurred remarkably quickly (∼ 500 yr). Reconstructed volumes of lacustrine (∼ 0.16 km3) and deltaic (∼ 0.09 km3) deposits indicate a bedload-to-suspended load ratio of 1:2, considerably higher than the ≤ 1:10 that is commonly assumed. At the downstream end of the landslide dam, the river incised a new channel through ≥ 70 m of Greater Himalayan gneiss, requiring a minimum bedrock incision rate of 13 mm/yr over last 5400 yr. The majority of incision presumably occurred over a fraction of this time, suggesting much higher rates. The high bedload ratio from such an energetic mountain river is a particularly significant addition to our knowledge of sediment flux in orogenic environments.  相似文献   

17.
The passive margin Texas Gulf of Mexico Coastal Plain consists of coalescing late Pleistocene to Holocene alluvial–deltaic plains constructed by a series of medium to large fluvial systems. Alluvial–deltaic plains consist of the Pleistocene Beaumont Formation, and post-Beaumont coastal plain incised valleys. A variety of mapping, outcrop, core, and geochronological data from the extrabasinal Colorado River and the basin-fringe Trinity River show that Beaumont and post-Beaumont strata consist of a series of coastal plain incised valley fills that represent 100 kyr climatic and glacio-eustatic cycles.

Valley fills contain a complex alluvial architecture. Falling stage to lowstand systems tracts consist of multiple laterally amalgamated sandy channelbelts that reflect deposition within a valley that was incised below highstand alluvial plains, and extended across a subaerially-exposed shelf. The lower boundary to falling stage and lowstand units comprises a composite valley fill unconformity that is time-transgressive in both cross- and down-valley directions. Coastal plain incised valleys began to fill with transgression and highstand, and landward translation of the shoreline: paleosols that define the top of falling stage and lowstand channelbelts were progressively onlapped and buried by heterolithic sandy channelbelt, sandy and silty crevasse channel and splay, and muddy floodbasin strata. Transgressive to highstand facies-scale architecture reflects changes through time in dominant styles of avulsion, and follows a predictable succession through different stages of valley filling. Complete valley filling promoted avulsion and the large-scale relocation of valley axes before the next sea-level fall, such that successive 100 kyr valley fills show a distributary pattern.

Basic elements within coastal plain valleys can be correlated with the record offshore, where cross-shelf valleys have been described from seismic data. Falling stage to lowstand channelbelts within coastal plain valleys were feeder systems for shelf-phase and shelf-margin deltas, respectively, and demonstrate that falling stage fluvial deposits are important valley fill components. Signatures of both upstream climate change vs. downstream sea-level controls are therefore interpreted to be present within incised valley fills. Signatures of climate change consist of the downstream continuity of major stratigraphic units and component facies, which extends from the mixed bedrock–alluvial valley of the eroding continental interior to the distal reaches, wherever that may be at the time. This continuity suggests the development of stratigraphic units and facies is strongly coupled to upstream controls on sediment supply and climate conditions within hinterland source regions. Signatures of sea-level change are critical as well: sea-level fall below the elevation of highstand depositional shoreline breaks results in channel incision and extension across the newly emergent shelf, which in turn results in partitioning of the 100 kyr coastal plain valleys. Moreover, deposits and key surfaces can be traced from continental interiors to the coastal plain, but there are downstream changes in geometric relations that correspond to the transition between the mixed bedrock–alluvial valley and the coastal plain incised valley. Channel incision and extension during sea-level fall and lowstand, with channel shortening and delta backstepping during transgression, controls the architecture of coastal plain and cross-shelf incised valley fills.  相似文献   


18.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

19.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   

20.
Alluvial sequences constitute a recognised source of information on past environmental change, but one that has scarcely been tapped in central Mexico. This paper reviews what is currently known about the Holocene alluvial stratigraphy of the region, focusing on the interplay between climate and the pace and style of sedimentation in the incised headwater reaches of stream networks. The records obtained in five different drainage basins – four in the state of Tlaxcala and one in Guanajuato – are presented and compared to published reconstructions of climate change. A near‐synchronous incision of all stream networks occurred close to 10 200 14C a BP in response to an increase in precipitation and stream discharge. A spell of very humid but markedly seasonal conditions ensued, resulting in the formation of wet meadows along streams and the accumulation of thick fine‐textured valley fills dominated by cumulic soil A horizons. After 9100 14C a BP a transition to a warmer and more arid climate provoked the thinning of vegetation cover on slopes, accelerated runoff and increased sediment delivery to streams. The aggradation of coarser‐textured valley fills poor in organic matter set in. It ceased or slowed down significantly after a few millennia as the studied stream reaches achieved a near‐graded condition adjusted to the relatively stable climate. Arid mid Holocene conditions are also reflected in the abundant precipitation of secondary carbonates in Guanajuato. At 3100 14C a BP higher precipitation caused more frequent flooding and a resumption of aggradation. Shortly after that date sedentary farmers colonised Tlaxcala. Agriculture altered runoff and sediment delivery to streams and accelerated cut‐and‐fill cycles on a scale that masked the impact of any climatic fluctuations. Guanajuato was colonised later and its alluvial record suggests the persistence of a humid climate at least until 1000 14C a BP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号