首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alan P. Heward 《Earth》1981,17(3):223-276
Barrier islands, beaches, wave-dominated deltas and chenier plains probably form more than one-fifth of present coasts, and constitute an even larger proportion of the subsiding lowland coasts likely to be preserved in the stratigraphic record. The geometry, vertical sequences and composition of their deposits are the result of: (1) shoreline behaviour, whether transgressive, regressive or stable; (2) physical processes, particularly the relative intensities of waves and tides; (3) climate; (4) global tectonic setting; and (5) topography of underlying deposits.Published interpretations indicate that equivalent deposits are abundant in the geological record. Sandstones are mostly quartzose, cemented by carbonates and quartz, and have sheet or linear geometries. Ancient deposits can provide evidence of palaeogeography and some are economically significant, particularly as hydrocarbon reservoir rocks.Four end-member sedimentation models are proposed for the interpretation of ancient deposits: (1) transgressive sheet sands associated with deltas; (2) non-deltaic transgressive sheet sands; (3) regressive sheet sands; and (4) linear sand bodies. Probable depositional settings, geometries, characteristics of deposits and palaeocurrent patterns are discussed.  相似文献   

2.
Latest Neoproterozoic to earliest Cambrian strata in north-western Canada provide an example of a pre-vegetation braid-delta depositional system. Depositional environments represented in the succession include braided fluvial and braid-delta distributary channels, aeolian dune fields and interdistributary lagoons/bays, as well as mouth bar, beach to shoreface, and prodelta to distal shelf settings. Three formations have been investigated: the Ingta Formation formed in wave-dominated nearshore to offshore shelf environments with little or no apparent deltaic influence, whereas the overlying Backbone Ranges and Vampire formations contain an extensive record of braid-delta deposits ranging from braidplain to distal prodelta facies. On the braid-plain, river channels reached widths of up to several kilometres. Such channels terminated seaward in braid deltas that showed some shoreline protuberance and were characterized by fluvial-dominated mouth-bar deposition with lesser wave influence; wave-dominated deltaic successions are rare in the succession. Interdeltaic areas were characterized by wave-dominated prograding shorelines. Interdistributary lagoons probably formed primarily in abandoned distributary channels. Delta-front/prodelta deposits are silt-rich and contain abundant soft-sediment deformation, including slumps. The deposits in these formations illustrate the significantly different nature of sedimentation prior to the advent of land plants. This is illustrated in the dominance of braided fluvial deposition and of silt-rich offshore facies that may have resulted from enhanced aeolian transport of loess. The non-actualistic effects of limited bioturbation and extensive microbial binding apparently exerted relatively little control on the distribution of facies. However, the absence of extensive bioturbation is manifest in pristine preservation of primary sedimentary structures, while the hypothesized latest Proterozoic-earliest Cambrian decline in microbial binding may be reflected in the upward increase in the abundance of sole marks in the succession.  相似文献   

3.
The interaction of river and marine processes in the fluvial to marine transition zone fundamentally impacts delta plain morphology and sedimentary dynamics. This study aims to improve existing models of the facies distribution, stratigraphic architecture and preservation in the fluvial to marine transition zone of mixed-process deltas, using a comprehensive sedimentological and stratigraphic dataset from the Middle Miocene Lambir Formation, Baram Delta Province, north-west Borneo. Eleven facies associations are identified and interpreted to preserve the interaction of fluvial and marine processes in a mixed-energy delta, where fluvial, wave and tidal processes display spatially and temporally variable interactions. Stratigraphic successions in axial areas associated with active distributary channels are sandstone-rich, comprising fluvial-dominated and wave-dominated units. Successions in lateral areas, which lack active distributary channels, are mudstone-rich, comprising fluvial-dominated, tide-dominated and wave-dominated units, including mangrove swamps. Widespread mudstone preservation in axial and lateral areas suggests well-developed turbidity maximum zones, a consequence of high suspended-sediment concentrations resulting from tropical weathering of a mudstone-rich hinterland. Within the fluvial to marine transition zone of distributary channels, interpreted proximal–distal sedimentological and stratigraphic trends suggest: (i) a proximal fluvial-dominated, tide-influenced subzone; (ii) a distal fluvial-dominated to wave-dominated subzone; and (iii) a conspicuously absent tide-dominated subzone. Lateral areas preserve a more diverse spectrum of facies and stratigraphic elements reflecting combined storm, tidal and subordinate river processes. During coupled storm and river floods, fluvial processes dominated the fluvial to marine transition zone along major and minor distributary channels and channel mouths, causing significant overprinting of preceding interflood deposits. Despite interpreted fluvial–tidal channel units and mangrove influence implying tidal processes, there is a paucity of unequivocal tidal indicators (for example, cyclical heterolithic layering). This suggests that process preservation in the fluvial to marine transition zone preserved in the Lambir Formation primarily records episodic (flashy) river discharge, river flood and storm overprinting of tidal processes, and possible backwater dynamics.  相似文献   

4.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

5.
刘淼  陈井胜  孙守亮  李斌  杨帆  张涛  汪岩  吴振 《地质通报》2018,37(9):1755-1759
为揭示北票(金-羊)盆地内北票组层序地层特征及沉积体系分布规律,应用层序地层学及沉积学理论和方法,综合利用野外露头、剖面等资料,建立了北票(金-羊)盆地北票组的层序地层格架,确定研究区的沉积相类型及分布规律。研究结果表明,北票(金-羊)盆地北票组可划分为2个三级层序,其内部可进一步划分为7个准层序组。在层序内识别出冲积扇、辫状河三角洲、湖泊3个沉积相。明确了沉积相的分布规律,向上形成由冲积扇到辫状河三角洲,再到湖相,最后是辫状河三角洲的沉积体系;平面上呈近北西—南东向展布的沉积体系,整体构成2个水进、水退的沉积体系。古地貌影响了底部冲积扇相沉积物的沉积特征。气候不仅影响了沉积物类型,且和湖平面变化共同控制了沉积物的演化规律。  相似文献   

6.
彭旸  龚承林  李顺利 《沉积学报》2022,40(4):957-978
河流、波浪和潮汐混合作用过程是当前沉积学的热点问题。通过梳理三角洲与其他一些海(湖)陆过渡沉积体系中关于河流—波浪、河流—潮汐、波浪—潮汐和河流—波浪—潮汐相互作用的相关研究,归纳总结了目前几种沉积过程的相互作用以及相应的沉积特征。河流和波浪的相互作用一般发生在河口附近,两者的相对强度以及波浪入射方向共同控制三角洲的形态和沉积物分布。长期的河流和波浪共同作用能够形成非对称性三角洲以及浪控复合斜坡型三角洲。河流和潮汐的相互作用通常发生在强潮汐或中潮汐区域的三角洲或河口湾的河流—海洋过渡带;随着相对海平面升降、沉积物供给变化和气候变化等因素的影响,潮汐和河流相互作用的三角洲和河口湾沉积体系经常反复叠加发育。潮汐和波浪的相互作用主要体现在潮汐不仅直接控制沉积物的沉积过程,而且间接性地移动波浪带进而影响相应的沉积相带。尽管目前河流、波浪、潮汐混合作用过程已经有一定程度的研究,但无论是短期小尺度的相互作用过程,还是长期受宏观因素(包括沉积物供给、海平面升降、构造沉降等)影响下的相互作用与演化过程,均有待进一步研究。  相似文献   

7.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

8.
沉积盆地的层序和沉积充填结构及过程响应   总被引:13,自引:4,他引:9  
林畅松 《沉积学报》2009,27(5):849-862
现代层序地层学的理论发展,把沉积过程纳入到地质演化的时空框架中并与地球的多旋回或节律演化结合研究,形成了一套带有革命性的、在等时地层格架中研究沉积作用的新方法,成为了油气资源等沉积矿产预测勘探的重要工具。沉积盆地的沉积充填可划分出与各级沉积旋回相对应的层序地层单元。追踪对比由不整合面或不整合面及其对应的整合面为界的高级别层序地层单元建立的区域性等时地层格架,对盆地构造古地理再造和油气勘探战略性研究至关重要;追踪四、五级等低级别层序地层单元和体系域建立的高精度层序地层格架,可为重点区域或区带的沉积体系和储集体的沉积构成和分布等的解剖提供精细的地层对比基础。依据沉积基准面的变化,从层序内水进到水退的沉积旋回中可划分出正常水退沉积、强制性水退沉积、水进沉积及垂向加积等成因沉积类型。海相或湖相盆地中三级层序地层单元内均可较好地划分出低位、水进、高位及下降体系域。盆地构造作用、气候变化、海、湖平面升降过程对层序发育的控制作用及沉积响应研究,一直是层序地层学或沉积地质分析领域的研究热点。沉积盆地的层序地层序列演化是盆地地球动力学过程的总体响应。层序地层学把盆地古构造、古地理的变迁纳入到统一的地球演化系统中研究,形成了与区域地球演化史或盆地动力学演化相结合的重要研究领域。多旋回盆地或叠合盆地中多期次的构造变革导致了多个区域性不整合面所分隔的多个构造层序的叠加。注重构造—层序地层的结合分析,揭示盆地的层序地层序列与多期盆地构造作用的成因联系,是构造活动盆地或大型叠合盆地沉积地质演化和油气聚集规律研究的关键。盆地构造作用,如前陆盆地多期次的逆冲挠曲沉降和回弹隆起的构造作用、多幕裂陷过程、多期构造反转等与重要不整合及区域性沉积旋回或层序的形成密切相关;而由气候变化引起的海或湖平面变化是控制高频沉积旋回或低级别层序发育的主要因素。在构造活动盆地中,构造坡折带对沉积体系域和沉积相的发育分布具重要控制作用。  相似文献   

9.
祁连山北缘旱峡地区发育完整的下白垩统下沟组-中沟组沉积序列;以陆源碎屑岩为主,发育砾岩、砂岩、钙质粉砂岩和页岩等;其中砾石分选差、磨圆一般、成分以灰白色砂岩为主,砂岩成分、结构成熟度中等-差。岩石组合、沉积序列和综合沉积特征研究表明,下沟组和中沟组主要由湖泊、扇三角洲、河流等3种类型沉积相、亚相与微相类型组成,发育了一系列重力流成因的沉积类型;湖泊沉积主要发育在下沟组底部和中沟组,扇三角洲沉积分布在下沟组中-上部,中沟组发育河流沉积。研究区早白垩世中期古流向以EN向为主,早白垩世晚期以W向为主,表明沉积沉降中心也由早期的旱峡西移至研究区西南侧。在综合分析的基础上,建立了研究区下白垩统下沟组-中沟组沉积相模式。  相似文献   

10.
The late Barremian succession in the Agadir Basin of the Moroccan Western High Atlas represents wave-dominated deltaic deposits. The succession is represented by stacked thickening and coarsening upwards parasequences 5–15 m thick formed during fifth- or fourth-order regression and building a third-order highstand systems tract. Vertical facies transitions in parasequences reflect flooding followed by shoaling of diverse shelf environments ranging from offshore transition interbedded mudstones, siltstones and thin sandstones, lower shoreface/lower delta front hummocky bedforms to upper shoreface/upper delta front cross-bedded sandstones. The regional configuration reflects the progradation of wave-dominated deltas over an offshore setting. The maximum sea-level fall led to the development of a sequence boundary that is an unconformity. The subsequent early Aptian relative sea-level rise contributes to the development of an extensive conglomerate lagged transgressive surface of erosion. The latter and the sequence boundary are amalgamated forming a composite surface.  相似文献   

11.
The stratigraphic architecture of shoal‐water deltaic systems developed in low‐accommodation settings is relatively well‐known. In contrast, the features of shoal‐water deltas developed in high‐accommodation settings remain relatively poorly documented, especially when compared with the available data sets for Gilbert‐type deltaic systems developed in the same settings. The lacustrine Valimi Formation (Gulf of Corinth, Greece) provides an opportunity to investigate the facies assemblage and architectural style of shoal‐water deltaic systems developed in high‐accommodation settings. The studied interval accumulated during the Pliocene and Pleistocene and represents part of the early syn‐rift Gulf of Corinth succession. Six facies associations, each described in terms of depositional processes and geometries, have been identified and interpreted to represent a range of proximal to distal deltaic sub‐environments: delta plain, distributary channel, mouth‐bar, delta front, prodelta and open lake. The facies associations and their architectural elements reveal characteristics which are not common in traditionally described shoal‐water deltas. Of note, different facies arrangements are observed in the distributary channels in different sectors of the delta, passing from thick single‐storey channel fills embedded within delta‐plain fines in landward positions, to thin, amalgamated and multi‐storey channels closer to the river mouth. This study proposes a new depositional model for shoal‐water deltas in high‐accommodation settings documenting, for the first time, that shoal‐water delta deposits can form a substantial part of stratigraphic successions that accumulate in these settings. The proposed depositional model provides new criteria for the recognition and interpretation of these deposits; the results of this study have applied significance for reservoir characterization.  相似文献   

12.
Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are cr...  相似文献   

13.
为揭示准噶尔盆地东缘中侏罗统头屯河组(J2t)层序地层特征及其沉积充填规律,结合露头、岩心及测井资料并运用高分辨率层序地层理论,对研究区头屯河组层序地层进行划分对比,对其沉积相展布特征和沉积环境演化规律进行研究。结果表明:头屯河组可划分出个1个Ⅲ级旋回、3个Ⅳ级旋回及9个Ⅴ级旋回,沉积物岩性以砂砾岩和泥岩为主,沉积环境主要为辫状河、辫状河三角洲和滨浅湖,发育向上"变深"对称型和非对称型的两种结构类型。头屯河组沉积时期湖泊较浅,沉积基底平缓,湖泊边缘坡度小,在头屯河组下段(J2t1)时期到头屯河组上段(J2t2)段时期经历了湖侵演变过程。结合研究区的层序地层和沉积相展布特征,认为研究区中侏罗统头屯河组具有辫状河、辫状河三角洲及湖泊3种沉积环境相结合的沉积演化模式。  相似文献   

14.
Observations from ground-penetrating radar, sediment cores, elevation surveys and aerial imagery are used to understand the development of the Elwha River delta in north-western Washington, USA, which prograded as a result of two dam removals in late 2011. Swash-bar, foreshore and swale depositional elements are recognized within ground-penetrating radar profiles and sediment cores. A model for the growth and development of small mountainous river wave-dominated deltas is proposed based on observation of both the fluvial and deltaic settings. If enough sediment is available in the fluvial system, mouth-bars form after higher than average river discharge events, creating a large platform seaward of the subaqueous delta plain. Swash-bars form concurrently or within a month of mouth-bar deposition as a result of wave action. Fair-weather waves drive swash-bar migration landward and in the direction of littoral drift. The signature of swash-bar welding to the shoreline is landward-dipping reflections, as a result of overwash processes and slipface migration. However, most swash-bars are eroded by the river mouth, as only 10 of the 37 swash-bars that formed between August 2011 and July 2016 survived within the Elwha River delta. The swash-bars that do survive either amalgamate onto the shoreline or an earlier deposited swash-bar, forming a single larger barrier at the delta front. In asymmetrical deltas, the signature of swash-bar welding is more likely to be preserved on the downdrift side of the delta, where formation is more likely and accommodation behind newer swash-bars preserves older deposits. On small mountainous river deltas, welded swash-bars may be more indicative of a large sediment pulse to the system, rather than large hydrological events.  相似文献   

15.
Two large (200 to 300 km), near‐continuous outcrop transects and extensive well‐log data (ca 2800 wells) allow analysis of sedimentological characteristics and stratigraphic architecture across a large area (ca 60 000 km2) of the latest Santonian to middle Campanian shelf along the western margin of the Western Interior Seaway in eastern Utah and western Colorado, USA. Genetically linked depositional systems are mapped at high chronostratigraphic resolution (ca 0·1 to 0·5 Ma) within their sequence stratigraphic context. In the lower part of the studied interval, sediment was dispersed via wave‐dominated deltaic systems with a ‘compound clinoform’ geomorphology in which an inner, wave‐dominated shoreface clinoform was separated by a muddy subaqueous topset from an outer clinoform containing sand‐poor, gravity‐flow deposits. These strata are characterized by relatively steep, net‐regressive shoreline trajectories (>0·1°) with concave‐landward geometries, narrow nearshore belts of storm‐reworked sandstones (2 to 22 km), wide offshore mudstone belts (>250 km) and relatively high sediment accumulation rates (ca 0·27 mm year?1). The middle and upper parts of the studied interval also contain wave‐dominated shorefaces, but coeval offshore mudstones enclose abundant ‘isolated’ tide‐influenced sandstones that were transported sub‐parallel to the regional palaeoshoreline by basinal hydrodynamic (tidal?) circulation. These strata are characterized by relatively shallow, net‐regressive shoreline trajectories (<0·1°) with straight to concave‐seaward geometries, wide nearshore belts of storm‐reworked sandstones (19 to 70 km), offshore mudstone belts of variable width (130 to >190 km) and relatively low sediment accumulation rates (ca ≤0·11 mm year?1). The change in shelfal sediment dispersal and stratigraphic architecture, from: (i) ‘compound clinoform’ deltas characterized by across‐shelf sediment transport; to (ii) wave‐dominated shorelines with ‘isolated’ tide‐influenced sandbodies characterized by along‐shelf sediment transport, is interpreted as reflecting increased interaction with the hydrodynamic regime in the seaway as successive shelfal depositional systems advanced out of a sheltered embayment (‘Utah Bight’). This advance was driven by a decreasing tectonic subsidence rate, which also suppressed autogenic controls on stratigraphic architecture.  相似文献   

16.
The Quilalar Formation and correlative Mary Kathleen Group in the Mount Isa Inlier, Australia, conformably overlie rift-related volcanics and sediments and non-conformably overlie basement rocks. They represent a thermal-relaxation phase of sedimentation between 1780 and 1740 Ma. Facies analysis of the lower siliciclastic member of the Quilalar Formation and the coeval Ballara Quartzite permits discrimination of depositional systems that were restricted areally to either N-S-trending marginal platform or central trough palaeogeographic settings. Four depositional systems, each consisting of several facies, are represented in the lower Quilalar Formation-Ballara Quartzite; these are categorized broadly as storm-dominated shelf (SDS), continental (C), tide-dominated shelf (TDS) and wave-dominated shoreline (WDS). SDS facies consist either of black pyritic mudstone intervals up to 10 m thick, or mudstone and sandstone associated in 6–12-m-thick, coarsening-upward parasequences. Black mudstones are interpreted as condensed sections that developed as a result of slow sedimentation in an outer-shelf setting starved of siliciclastic influx. Vertical transition of facies in parasequences reflects flooding followed by shoaling of different shelf subenvironments; the shoreface contains evidence of subaerial exposure. Continental facies consist of fining-upward parasequences of fluvial origin and tabular, 0·4–4-m-thick, aeolian parasequences. TDS facies are represented by stacked, tabular parasequences between 0·5 and 5 m thick. Vertical arrangement of facies in parasequences reflects flooding and establishment of a tidal shelf followed by shoaling to intertidal conditions. WDS facies are preserved in 0·5–3-m-thick, stacked, tabular parasequences. Vertical transition of facies reflects initial flooding with wave reworking of underlying arenites along a ravinement surface, followed by shoaling from lower shoreface to foreshore conditions. Parasequences are stacked in retrogradational and progradational parasequence sets. Retrogradational sets consist of thin SDS parasequences in the trough, and C, TDS and probably WDS parasequences on the platforms. Thick SDS parasequences in the trough, and TDS, subordinate C and probably WDS parasequences on the platforms make up progradational parasequence sets. Depositional systems are associated in systems tracts that make up 40–140-m-thick sequences bounded by type-2 sequence boundaries that are disconformities. Transgressive systems tracts consist of C, TDS and probably WDS depositional systems on the platforms and the SDS depositional system and suspension mudstone deposits in the trough. The transgressive systems tract is characterized by retrogradational parasequence sets and developed in response to accelerating rates of sea-level rise following lowstand. Condensed-section deposits in the trough, and the thickest TDS parasequences on the platforms reflect maximum rates of sea-level rise and define maximum flooding surfaces. Highstand systems tract deposits are progradational. Early highstand systems tracts are represented by TDS and probably WDS depositional systems on the platforms and suspension mudstone deposits in the trough and reflect decreasing rates of sea-level rise. Later highstand systems tracts consist of the progradational SDS depositional system in the trough and, possibly, thin continental facies on the platforms. This stage of sequence development is related to slow rates of sea-level rise, stillstand and slow rates of fall. Lowstand deposits of shelf-margin systems tracts are not recognized but may be represented by shoreface deposits at the top of progradational SDS parasequence sets.  相似文献   

17.
ABSTRACT Stratigraphy presupposes a hierarchy of scales of spatial organization supplemented at the small‐scale end by sedimentological concepts (beds, bed sets and bed cosets) and, at larger spatial scales, by sequence‐stratigraphic concepts (systems tracts, parasequences, sequences). Between these two end‐members are intermediate‐scale bodies described as ‘lithofacies’, or simply ‘facies’. A more restricted concept, granulometric facies, can be described in terms of horizontal grain‐size gradients (‘facies change’) and cyclic vertical grain‐size gradients (‘stratification’). Assemblages of facies so defined (also called depositional systems) are not random, but occur in a limited suite of patterns. Such assemblages may be linked to two classes of bounding surfaces, a source diastem (the immediate source of the sediment) and a surface of closure (if preserved), between which is sandwiched a transgressive or regressive, basinward‐fining facies succession. Systems‐bounding surfaces are notably more continuous than internal (gradational) facies boundaries. By thus restricting the definition of a facies assemblage (depositional system), it is possible to describe the Quaternary of the Virginia coast with as few as 12 systems. Depositional systems in the Quaternary of the Virginia coast are allometric, in that any system can be derived from any other by plastic expansion of one or more facies relative to another, or by simple symmetry operations. Self‐similarity prevails across this intermediate scale of stratigraphic organization. Facies assemblages (depositional systems) consist of event beds, which themselves have erosional basal boundaries and internal successions of microfacies. At larger spatial scales, depositional systems are repeated, either autocyclic repetitions forced by processes within the basin of deposition or allocyclic repetitions, as ‘parasequences’ and high‐frequency sequences. In the Virginia Quaternary, systems architecture is compatible with sequence architecture and nests conformably within its framework, but analysis of systems architecture reveals rules beyond those governing sequence architecture.  相似文献   

18.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

19.
《Sedimentary Geology》2005,173(1-4):233-275
The lacustrine Ermenek Basin evolved as a SE-trending intramontane graben affected by strike–slip deformation, with the initial two lakes merging into one and receiving sediment mainly through fan deltas sourced from the basin's southern margin. The northern margin was a high-relief rocky coast with a wave-dominated shoreline. The Early Miocene lacustrine sedimentation was terminated by a late Burdigalian marine invasion that drowned the basin and its surroundings. The lacustrine basin-fill succession is up to 300 m thick and best exposed along the southern margin, where it consists of four sequences bounded by surfaces of forced regression. The offshore architecture of each sequence shows a thin lowstand tract of shoreface sandstones overlain by a thick transgressive systems tract of mudstones interbedded with sandy tempestites and delta-derived turbidites, which form a set of coarsening-upward parasequences representing minor normal regressions. The corresponding nearshore sequence architecture includes a thick lowstand tract of alluvial-fan deposits overlain by either a well-developed transgressive systems tract (backstepping parasequence set or single fan-deltaic parasequence) and poorly preserved highstand tract; or a thin transgressive tract (commonly limited to flooding surface) and a well-developed highstand tract (thick fan-deltaic parasequence). The sequences are poorly recognizable along the northern margin, where steep shoreline trajectory rendered the nearshore system little responsive to lake-level changes. The resolution of local stratigraphic record thus depends strongly upon coastal morphology and the character of the depositional systems involved.The sequential organization of the basin-fill succession reflects syndepositional tectonics and climate fluctuations, whereas the lateral variation in sequence architecture is due to the localized sediment supply (deltaic vs. nondeltaic shoreline), varied coastal topography and differential subsidence. The study points to important differences in the sequence stratigraphy of lacustrine and marine basins, related to the controlling factors. A crucial role in lacustrine basin is played by climate, which controls both the lake water volume and the catchment sediment yield. Consequently, the effects of tectonics and the dynamics of changes in accommodation and sediment supply in a lacustrine basin are different than in marine basins.  相似文献   

20.
琼东南盆地宝岛地区层序地层和砂体展布特征分析   总被引:6,自引:1,他引:5  
以层序地层学理论为基础,通过对地震和测井层序进行分析,在琼东南盆地宝岛地区第三系识别出14个地震层序,并分析了各层序的发育特征.总结了不同体系域砂体类型,对各体系域砂体的空间展布进行了详细分析.并指出有利砂体的分布特征:低水位体系域,砂体主要分布在低水位楔、斜坡扇和盆底扇;高水位体系域,主要分布在三角洲、扇三角洲、海底扇和峡谷水道.研究表明,以层序地层学理论为指导,划分层序和体系域,进而对有利砂体进行预测,对该地区油气勘探有重要指导意义.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号