首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Microstructural criteria for the determination of the sense of shear in rocks homogeneously deformed in the partially melted state are similar to those which apply to solid-state deformation. Sense of shear determination is either direct, deduced from the sense of rotation of markers, or indirect, involving the obliquity between the shear and foliation planes, or between the successive foliations imprinted at different stages of progressive deformation.This study is a by-product of the detailed structural and microstructural investigation of a high-grade metamorphic rock pile (Variscan Vosges Massif, France) which underwent subhorizontal shearing during partial melting and further solidification. Depending on the rock chemistry, on the position in the pile and the relative timing of progressive deformation, layered migmatites and homogeneous granites were variously deformed in the partially melted and solid states. The sense of shear obtained from these rock types, using the criteria presented here, consistently gives a top to SW direction.  相似文献   

2.
A new method for determining the sense of shear in plagioclase-bearing tectonites from the (010) orientation of plagioclase feldspar is presented. The method is based on the asymmetry of the (010) plane with respect to the structural frame (foliation and lineation) and the dominant activity of the (010) slip plane in the high-temperature plasticity of plagioclase feldspar. Using examples from the Zabargad gneisses (Red Sea) the method is applied to plagioclases of An25–An45 and compared with other methods of shear-sense determination (quartz c-axis fabrics and microstructural criteria).  相似文献   

3.
Argument about shear on foliations began in the mid 19th century and continues to the present day. It results from varying interpretations of what takes place during the development of different types of foliations ranging from slaty cleavages through differentiated crenulation cleavages, schistosity and gneissosity to mylonites. Computer modelling, quantitative microstructural work and monazite dating have provided a unique solution through access to the history of foliation development preserved by porphyroblasts. All foliations involve shear in their development and most can be used to derive a shear sense. The shear sense obtained is consistent between foliation types and accords with recent computer modelling of these structures preserved within porphyroblasts relative to those in the matrix. The asymmetry of curving foliation into a locally developing new one allows determination of the shear sense along the latter foliation in most rocks. The problem of shear on fold limbs and parallelism of foliation and the flattening plane of the strain ellipse is resolved through the partitioning of shearing and shortening components of deformation into zones that anastomose around ellipsoidal domains lying parallel to the XY plane. Conflicts in shear sense occur if multiple reuse or reactivation of foliations is not recognized and allowed for but are readily resolved if taken into account.  相似文献   

4.
The Diancang Shan metamorphic massif, the northwestern extension of the Ailao Shan Massif, is a typical metamorphic complex situated along the NW–SE-trending Ailao Shan–Red River shear zone. Diancang Shan granitic and amphibolitic mylonites collected from sheared high-grade metamorphic rocks were studied using petrographic and electron-backscatter diffraction techniques. Sensitive high-resolution ion microprobe U–Pb dating of zircon grains from the granitic mylonites constrains the timing of shearing. Macro- and microstructural and textural analysis reveals intense plastic deformation of feldspar, quartz, and amphibole under amphibolite-facies conditions, all consistently document left-lateral shearing. Porphyritic monzogranitic mylonite within the shear zone possesses evidence supporting a sequential, progressive process from crystallization during magma emplacement, through submagmatic flow to solid-state plastic deformation. We suggest that the early-kinematic pluton subsequently underwent strong left-lateral strike–slip shearing. The development of complex textures of quartz, feldspar, and amphibole from the granitic and amphibolitic mylonites apparently records successive variation of conditions attending coherent, solid-state high-temperature ductile deformation during regional left-lateral shearing. All magmatic zircons from the mylonitized porphyritic monzogranite give U–Pb ages of 30.95 ± 0.61 million years for the crystallization of the granite. This age provides the timing of onset of left-lateral shearing along the Ailao Shan–Red River shear zone in the Diancang Shan high-grade metamorphic massif.  相似文献   

5.
摩天岭花岗岩体为一大型韧性剪切带,岩体中广泛发育的片麻理实际上是糜棱面理,其总体走向为NNE向,倾向NWW-SWW,倾角30~70°,拉伸线理向SWW或NWW倾伏,根据S-C面理构造、长石和石英不对称眼球等剪切指向标志体判断,韧性剪切带运动学为正滑剪切。  相似文献   

6.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

7.
江西金山金矿床两类矿化及其石英热发光特征   总被引:6,自引:0,他引:6  
金山金矿床为一大型剪切带型独立矿床,主要矿化类型分为含金石英脉及硅化岩型两种,前者分布于金山剪切带上盘粉砂质千枚岩中,受顺层剪切裂隙控制,规模较小;后者主要受金山剪切带内R型剪切裂隙控制,规模大。研究表明,两类矿化是性质相同的含矿变质流体以不同方式在不同构造位置发生成矿作用的产物。石英热发光特征是评价两者含矿性的有效标志。  相似文献   

8.
湖南西部钨锑金矿床赋存于雪峰弧形构造带之前寒武系浅变质岩系中,受到韧-脆性剪切构造控制,具有明显的地层层位效应。区域变质和动力变形过程中,大规模深层次的韧性剪切变形促使矿源层中的Au活化迁移,连同SiO2,K等活性组分和岩石中的H2O一起形成含金动力变质热液,当其进入伸展型脆韧性剪切带及其剥离构造带、张扭性断裂带时,形成充填交代型含金石英脉型和破碎带蚀变岩型金矿。研究表明,矿床具有特定的元素共生组合,矿脉(体)沿倾向延伸大且普遍具有侧伏成矿现象,沿控矿构造方向侵入的长英质脉岩带与成矿有一定的联系;载金的硫(砷)化物以富集轻硫同位素为特点,氧化-还原反应是金成矿的主要化学机制等特征性成矿标志。矿床广泛发育中低温热液蚀变,黄铁矿、毒砂矿物和As元素是找金的标型矿物和指示元素。矿床成因主要属于受韧-脆性脆剪切带控制的变质热液型金矿。  相似文献   

9.
A detailed structural and microstructural analysis of the Miocene Raft River detachment shear zone (NW Utah) provides insight into the thermomechanical evolution of the continental crust during extension associated with the exhumation of metamorphic core complexes. Combined microstructural, electron backscattered diffraction, strain, and vorticity analysis of the very well exposed quartzite mylonite show an increase in intensity of the rock fabrics from west to east, along the transport direction, compatible with observed finite strain markers and a model of ``necking'' of the shear zone. Microstructural evidence (quartz microstructures and deformation lamellae) suggests that the detachment shear zone evolved at its peak strength, close to the dislocation creep/exponential creep transition, where meteoric fluids played an important role on strain hardening, embrittlement, and eventually seismic failure.Empirically calibrated paleopiezometers based on quartz recrystallized grain size and deformation lamellae spacing show very similar results, indicate that the shear zone developed under stress ranging from 40 MPa to 60 MPa. Using a quartzite dislocation creep flow law we further estimate that the detachment shear zone quartzite mylonite developed at a strain rates between 10−12 and 10−14 s−1. We suggest that a compressed geothermal gradient across this detachment, which was produced by a combination of ductile shearing, heat advection, and cooling by meteoric fluids, may have triggered mechanical instabilities and strongly influenced the rheology of the detachment shear zone.  相似文献   

10.
太行山南段自立庄韧性剪切带变形特征   总被引:1,自引:0,他引:1  
张祥信 《地质与勘探》2021,57(1):166-174
太行山南段临城自立庄地区古元古界甘陶河群中低级变质岩中发育一条左行逆冲型韧性剪切带。自立庄韧性剪切带出露长约10 km,宽约1 km,走向NNE,往西缓倾,在EW方向上由若干条强变形带与其间的弱变形域或岩块组成,平面上呈现平行式的组合特征。该韧性剪切带内发育糜棱岩、拉伸线理和皱纹线理、不对称褶皱、石香肠构造和构造透镜体、S-C面理和旋转碎斑等宏观和微观构造。S-C面理、旋转碎斑、不对称褶皱等宏微观变形特征一致表明自立庄韧性剪切带上盘由西往东逆冲的运动学性质。在对韧性剪切带宏观、微观构造特征研究基础上,结合区域资料,认为自立庄韧性剪切带的形成与华北克拉通古元古代末期西部陆块与东部陆块的EW向碰撞拼合有关,是18.5 Ga吕梁运动的产物。自立庄韧性剪切带的厘定为太行山南段古元古代构造演化提供了基础资料。  相似文献   

11.
S-C Mylonites   总被引:2,自引:0,他引:2  
Two types of foliations are commonly developed in mylonites and mylonitic rocks: (a) S-surfaces related to the accumulation of finite strain and (b) C-surfaces related to displacement discontinuities or zones of relatively high shear strain. There are two types of S-C mylonites. Type I S-C mylonites, described by Berthé et al., typically occur in deformed granitoids. They involve narrow zones of intense shear strain which cut across (mylonitic) foliation.Type II S-C mylonites (described here) have widespread occurrence in quartz-mica rocks involved in zones of intense non-coaxial laminar flow. The C-surfaces are defined by trails of mica ‘fish’ formed as the result of microscopic displacement discontinuities or zones of very high shear strain. The S-surfaces are defined by oblique foliations in the adjacent quartz aggregates, formed as the result of dynamic recrystallization which periodically resets the ‘finite-strain clock’. These oblique foliations are characterized by grain elongations, alignments of segments of the grain boundary enveloping surfaces, and by trails of grains with similar c-axis orientations.Examples of this aspect of foliation development in mylonitic rocks are so widespread that we suggest the creation of a broad class of S-C tectonites, and a deviation from the general tradition of purely geometric analysis of foliation and time relationships. Kinematic indicators such as those discussed here allow the recognition of kilometre-scale zones of intense non-coaxial laminar flow in crustal rocks, and unambiguous determination of the sense of shear.  相似文献   

12.
Microstructural analysis and microthermometry are useful methods for determining the deformation evolution. To address this issue, rheological behavior of quartz, feldspar and calcite in veins and host rocks during deformation, are presented in the mylonite zone of the dextral reverse Zamanabad Shear Zone (ZSZ), in northern part of Sistan Suture Zone (SSZ), in east of Iran. Microstructure evidences revealed two evolution stages of high and low temperature deformation. Quartz microstructures in the ZSZ show abundant evidences for early high-temperature plastic deformation (e.g. Bulging recrystallization (BLG)) which are as microstructures with SW directed ductile shearing in the central parts of the ZSZ. This shear zone shows progressively decreasing strain away from the central of shear zone toward the wall. High-temperature microstructures are overprinted partly or completely during shearing by the later low-temperature deformation (e.g. Pressure solution, fractures, veinlets). Microstructural observations of veins (quartz and calcite) confirms the results of microstructures in the host rock, as quartz veins occurred from peak metamorphic conditions (<400°C) and then in lower P–T conditions have been formed calcite veins (~250°C). According to microthermometric studies, two primary fluid groups are observed in quartz veins: (1) fluids trapped during peak deformation conditions, with higher-salinity, They were initially trapped at ~300–400°C, (2) smaller fluids by trapping of low-salinity inclusions at ~240–180°C that related to subsequent phases of shear zone exhumation in lower deep. Microthermometry results and microstructural analysis indicate deformation under lower greenschist facies conditions for the ZSZ, and then exhumation of the early of high-temperature rocks within regime of ductile-brittle transition to brittle.  相似文献   

13.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

14.
张青  李馨 《岩石学报》2021,37(4):1000-1014
在过去的二十年里,EBSD (Electron Backscattered Diffraction),即电子背散射衍射测试技术,已广泛应用于韧性组构分析,成为变形运动学、流变学分析的常规手段.该方法主要应用于流变条件下矿物晶轴组构定向性分析,以判定流变剪切指向、对比应变强度、估算变形温度.理论上讲,EBSD法适用于所有...  相似文献   

15.
The Simav metamorphic core complex of the northern Menderes massif, western Turkey, consists of a plutonic (Tertiary) and metamorphic (Precambrian) core (footwall) separated from an allochthonous cover sequence (hanging wall) by a low-angle, ductile-to-brittle, extensional fault zone (i.e. detachment fault). The core rocks below the detachment fault are converted into mylonites with a thickness of a few hundred metres. Two main deformation events have affected the core rocks. The first deformational event (D1) was developed within the Precambrian metamorphic rocks. The second event (D2), associated with the Tertiary crustal extension, includes two distinct stages. Stage one is the formation of a variably developed ductile (mylonitic) deformation (D2d) in metamorphic and granitic core rocks under greenschist facies conditions. The majority of the mylonites in the study area have foliations that strike NNW to NNE and dip SW to SE. Stretched quartz and feldspar grains define the mineral lineation trending SW-NE direction and plunging gently to SW. The kinematic indicators indicate a top-to-NE sense of shear. Stage two formation of brittle deformation (D2b) that affected all core and cover rocks. D2b involves the development of cataclasites and high-angle normal faults. An overall top towards the north sense of shear for the ductile (mylonitic) fabrics in the core rocks is consistent with the N-S regional extension in western Turkey.  相似文献   

16.
17.
东北亚大陆于晚中生代时期发生了大规模地壳伸展,发育变质核杂岩和不对称花岗岩穹隆,其伸展剪切机制一直是构造研究的重要内容之一。中蒙边界东南段沿北东向展布了罕乌拉、纳兰和宝德尔等3个不对称花岗岩伸展穹隆,主体均为晚中生代花岗岩侵入体,岩体西北缘发育韧性剪切(糜棱岩)带,并被后期高角度正断层所围限,整体为穹隆状。根据罕乌拉穹隆韧性剪切带内强变形中粗粒钾长花岗岩(133±1 Ma)和弱变形细粒花岗岩(128±2 Ma)的构造关系及其锆石U-Pb年龄,推测该穹隆内岩体可能为同伸展岩体,韧性伸展时间在133 Ma之后并持续至128 Ma或更晚,与同区其他穹隆发育时限相同。笔者用Rf/ф方法测量了3个穹隆剪切带内糜棱岩中长石的有限应变轴率,利用Hsu图解获得其应变类型为平面压扁应变(k=0.5)。用长石极莫尔圆法、刚性颗粒网法和C轴石英组构法估算了韧性剪切的长期变形过程,得到糜棱岩的平均运动学涡度值为0.68~0.74,表明这些穹隆的韧性剪切作用主要是纯剪切和简单剪切分量几乎相等的一般剪切作用。石英斜向条带法测得的韧性变形后期的运动学涡度值为0.87~0.99,平均值为0.93...  相似文献   

18.
韧性剪切带在岩石圈地壳中广泛存在,蕴含应力、应变和温压等环境参数,是构造解析、流变学和成因机制研究的重要对象.辽吉裂谷带位于辽宁东部-吉林南部,是华北克拉通重要的古元古代活动带之一.连山关岩体地处辽吉裂谷带北缘,经历复杂变质变形作用,岩体南缘发育NWW向右行走滑韧性剪切带.糜棱岩显微结构观测分析揭示,剪切带内糜棱岩以S、SL构造岩为主,总体呈压扁型应变.运动学涡度值为0.91~0.97,均大于0.75,指示简单剪切为主的变形特征.糜棱岩中云母显示塑性拉长,石英动态重结晶明显,以膨凸重结晶作用为主.EBSD分析结果表明,石英发育中低温菱面组构,对应变形温度450~550℃,暗示糜棱岩形成于低绿片岩相-低角闪岩相.结合前人研究成果,我们认为连山关韧性剪切带可能起源于早元古代晚期.连山关岩体先后经历早期隆起造成的伸展-滑脱作用和晚期与上覆辽河群共同经历的南北向挤压,从而在岩体南缘形成陡倾的右行韧性剪切带.   相似文献   

19.
郯庐断裂带中-南段走滑构造特征与变形规律   总被引:36,自引:13,他引:23       下载免费PDF全文
朱光  徐佑德  刘国生  王勇生  谢成龙 《地质科学》2006,41(2):226-241,255
在大别造山带东端和苏鲁造山带西端,郯庐断裂带存在着同造山期和早白垩世两期左旋走滑韧性剪切带,在张八岭隆起南段迄今为止只发现了早白垩世的走滑剪切带。这些剪切带由若干条小型韧性剪切带组成,带内糜棱岩都具有陡倾的糜棱面理和平缓的矿物拉伸线理。野外构造、显微构造及石英C轴组构皆指示了左旋走滑剪切指向。新生矿物组合和矿物变形行为分析显示大别山东端郯庐早、晚两期剪切带主要形成于中绿片岩相的变质温度环境,张八岭隆起南段剪切带主要形成于高绿片岩相的变质温度环境,苏鲁造山带西端郯庐早、晚两期剪切带则形成于高角闪岩相的变质温度环境。糜棱岩内基质中新生白云母的电子探针分析指示大别山东端和张八岭隆起南段出露的郯庐韧性剪切带形成于低压环境下,而苏鲁造山带西端的郯庐韧性剪切带形成于高压榴辉岩相环境。这些详细的构造研究显示:在华北与华南板块的碰撞造山期郯庐断裂带以左旋走滑构造型式存在,而在早白垩世太平洋构造域中它又再次发生了强烈的左行平移。  相似文献   

20.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号