首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents a case history of the performance of a full-scale test embankment constructed on a marine soft clay deposit improved by prefabricated vertical drains (PVDs) in the east of China. For analyzing the subsoil behavior, a 2D FEM model is established, in which the PVD-improved effect is considered by a simplified method of equivalent vertical hydraulic conductivity. The calculated results can predict the settlement behavior well; however, the FEM gives an underestimate for the value of excess pore pressures and it predicts similar values for the dissipation rate of excess pore pressures. The measured undrained shear strength of subsoil, Cu, is compared with the predicted value based on Ladd’s empirical equation and the Modified Cam-Clay model (MCC). The shear strength predicted by Ladd’s equation agrees well with the measured value, whereas the MCC overestimates the ability to improve subsoil shear strength during consolidation. The undrained shear strength of subsoil, Cu, increased as the construction progressed, and the shear strength incremental ratio, ΔCup′, decreased slightly with the degree of consolidation, U.  相似文献   

2.
A remarkable combined dry jet mixing (DJM) and prefabricated vertical drains (PVDs) method was used to enhance the performance for soft ground improvement. In the combined method, PVDs are first installed and then DJM columns are installed between the PVDs at larger spacing. This combined method improves the effectiveness of the ground improvement and creates a more economical solution. This paper presents a case study of the combined method for marine clay improvement in Lianyugang of China. The excess pore water pressure in soils created by the installation of DJM columns with and without PVDs was monitored and compared. In situ standard penetration tests were conducted in the DJM columns and before-and-after piezocone penetration tests were performed in soils surrounding the columns. Long-term settlement monitoring under embankment loading was carried out for the ground improved by combined method and DJM method alone. The field tests, settlement monitoring and economic benefit analysis results demonstrated that the DJM-PVD method is technologically sound and cost-effective as compared with the conventional DJM method.  相似文献   

3.
A centrifugal model test was performed for an embankment backfilled with lime-stabilized soil on an undisturbed marine clay foundation. During the test, in-flight photographs were captured, settlements were measured by displacement sensors, and displacement contours were obtained from the markers installed on the front face of the model foundation. These test data were analyzed and discussed in this paper. The test results show that the embankment was stable at 2 m height but ruptured during the loading from 2 to 4 m height. The ratio of the maximum horizontal displacement increment to the ground settlement increment at the embankment centerline suddenly increased during the loading from 4 to 6 m height, indicating the failure of the foundation. This result is in agreement with the observation of the centrifugal test and the calculated Terzaghi ultimate bearing capacity under an undrained condition. Considering the brittle behavior and low tensile strength of the lime-stabilized soil, it is recommended that the lime-stabilized soil should only be used for a low embankment with a height less than 2 meters.  相似文献   

4.
Conventional drainage consolidation methods cause significant energy consumption and environmental issues. In this paper, a method combining siphon drainage and surcharge loading is proposed to drain water from soft soil with vertically installed prefabricated vertical drains (PVDs) and a siphon tube. To investigate the availability and effectiveness of this method, a laboratory physical modeling test was conducted to investigate the drainage and consolidation behavior. The laboratory modeling test results of this method were compared with the calculated results of the ideal sand-drained ground consolidation method to clarify the advantages and mechanism of this method. Comparison results show that the pore pressure and settlement in the proposed method developed faster than the calculation results of ideal sand-drained consolidation theory. About 10?m thickness of unsaturated zone can be formed by siphon drainage which produce a surcharge loading effect on the soil below the flow profile. Drainage is a very slow process in soft soil, and siphon drainage can work continually. Siphon drainage combined with surcharge loading is potentially a good alternative to drain water from soft clay economically and environmentally.  相似文献   

5.
The effectiveness of constructing a geogrid-reinforced and pile supported embankment on soft ground to reduce differential settlement has been studied by pilot scale field tests and numerical analysis. Three-by-three pile groups with varying pile spacing were driven into a layer of soft ground, and a layer of geogrid was used as reinforcement over each pile group. Further, a 2-D numerical analysis has been conducted using the computer program FLAC 2D. The mechanisms of load transfer can be considered as a combination of embankment soil arching, geogrid tension, and stress transfer due to the difference in stiffness between pile and soft ground. Based on the pilot scale field tests and results of numerical analysis, we find that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also, the most effective load transfer and vertical stress reduction at the midspan between piles occurs when the pile cap spacing index D/b (D: pile cap spacing, b: diameter of pile) is 3.0.  相似文献   

6.
Erective Sea Embankment with PCC Piles   总被引:2,自引:0,他引:2  
  相似文献   

7.
The effectiveness of constructing a geogrid-reinforced and pile supported embankment on soft ground to reduce differential settlement has been studied by pilot scale field tests and numerical analysis. Three-by-three pile groups with varying pile spacing were driven into a layer of soft ground, and a layer of geogrid was used as reinforcement over each pile group. Further, a 2-D numerical analysis has been conducted using the computer program FLAC 2D. The mechanisms of load transfer can be considered as a combination of embankment soil arching, geogrid tension, and stress transfer due to the difference in stiffness between pile and soft ground. Based on the pilot scale field tests and results of numerical analysis, we find that the geosynthetic reinforcement slightly interferes with soil arching, and helps reduce differential settlement of the soft ground. Also, the most effective load transfer and vertical stress reduction at the midspan between piles occurs when the pile cap spacing index D/b (D: pile cap spacing, b: diameter of pile) is 3.0.  相似文献   

8.
Abstract

Pipes buried in soft ground can be damaged due to the vertical and lateral movement of the ground during the construction of the embankment. To investigate such a movement of the soft ground, full-scale tests using embankment piles and stabilizing piles were conducted for 70?days. A pile-supported embankment has been used to reduce the deformation of soft ground by transferring the embankment load through piles to the firm layer below the soft ground, whereas stabilizing piles have been employed to resist the lateral earth pressure that is induced in soft ground by embankment loads. The Coupling Area (CA), which was defined as the quantitative index to determine the resistance effect of both settlement and lateral flow of the soft ground when the embankment was reinforced, is adapted. The analysis results of the CA indicate that the piled embankment was more effective for preventing the damage to buried pipe installed near the embankment, while the stabilizing piles had almost the same effect as the piled embankment when the pipe was buried far away from the embankment.  相似文献   

9.
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency.  相似文献   

10.
A very soft ground constructed by dredging and hydraulic fill has characteristics such as high water content, high initial void ratio, and very little effective stress. Estimating, with thorough considerations about consolidation properties and the initial stress associated with each layer's distinctive stress history, is essential in order to predict a reasonable consolidation settlement of soft ground. By investigating a construction project for national industrial complexes at a coastal area in southern Korea that experienced reclamation and ground improvement adapting PVD, various laboratory tests to find consolidation properties were performed with undisturbed samples collected from the entire depth of the marine clay fill layer and original clay layer. Through the investigation, this report suggests relationships of heterogeneity of permeability in both vertical and horizontal directions, void ratio-effective stress, and void ratio-permeability. Considering the fact that the original clay layer was under the process of consolidation by load due to hydraulic fill from the top, estimating the appropriate initial stress of each layer is critical to predict the future process of consolidation settlement determined by time. In order to obtain the initial stresses of two layers with different stress histories related to consolidation, cone penetration and dissipation tests were conducted.  相似文献   

11.
Prediction of Settlements of Soft Clay Subjected to Long-Term Dynamic Load   总被引:2,自引:0,他引:2  
—Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stressFEM method.The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay isused to predict the wave induced excess pore water pressure and residual strain of soft clay.The settle-ments of two types of breakwaters on the soft clay under ocean wave load,a low embankment subjected totraffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculatedas examples.  相似文献   

12.
Based on the vertical equal strain assumption, there are many consolidation theories of soft soil incorporating vertical drains. Because the influence of many factors is often ignored and the flow of the pore water usually happens in three-dimensional directions, analytical solutions could not be accurate enough. Because of the amount of computer storage and the computing time needed, two-dimensional finite element analysis is used to model the stone column improving the soft foundation. The embankment load is transferred to a column because of the soil arching effect. When the embankment is constructed, the settlement accounts for 64% of the total settlement, which shows that the column can reduce the post-construction settlement. The stone column's bulge is confined to a length about one to two times the diameter of the stone column away from its top, and the column at the toe would bears the shear stress to some extent.  相似文献   

13.
The results of one-dimensional compression tests conducted on undisturbed specimens of Jiangsu soft marine clay is presented. Because of its high in situ void ratios and natural water content, Jiangsu soft marine clay displays high values of both the virgin compression index, Cc, and the secondary compression coefficient, Cα. The laboratory data indicates that the value of the ratio Cα/Cc for Jiangsu soft marine clay is constant. However, neither Cα nor Cc are constant: they both depend upon the natural water content (or void ratio) and thus are also dependent on the deformation (or compression) of Jiangsu soft marine clay. Settlement analyses show that the secondary settlement of Jiangsu soft marine clay is a significant component of the field settlement. The concept of a constant value for Cα/Cc is used to predict the secondary settlement of a surcharged embankment founded upon Jiangsu soft marine clay. The predictions are in agreement with the limited post-construction field measurements of the embankment settlement.  相似文献   

14.
Stability of the Guiding Dike in Yangtze Estuary Under the Wave Load   总被引:3,自引:0,他引:3  
1 .IntroductionIt has beenrealizedthat constructing gravitystructures onsoft soil foundations is a difficult task,especiallyinthe marine area where boththe geological and environmental conditions are severe .Thisisnot only because the bearing capacity of the soft foundation is relatively low, but also because thestrength of the soft soil will befurther weakened bythe waveloading (Andersenet al .,1988 ;Ander-sen and Lauritzsen,1988 ; Yasuhara ,1988) .The strength weakening may cause serious d…  相似文献   

15.
Lateral flow of soft ground occurs when embankment filling is performed on reclaimed land of foreshore. If a utility pipe is buried in soft ground undergoing the lateral flow, severe damage to the pipe can be caused. A pile-supported embankment has been used to support embankment to minimize lateral flow of the soft soil by transferring the embankment loads through the piles to the firm layer. To prevent damage to the buried pipe subjected to lateral force of the soft ground, full-scale field experiments on the piled embankment were conducted for 70 days. The test results show that the piled embankment effectively reduces both the settlements of the ground and the lateral displacements of the buried pipe. Although additional load was not imposed on the embankment after finishing embankment filling, the settlement and lateral displacement of soft ground simultaneously increased. This coupling behavior was observed at the toe of the embankment and the back of the buried pipe. To quantitatively evaluate the coupling effect of the movement, the coupling area (CA) was coined and analyzed with the efficiency of load transfer. The efficiency evaluated by the CA was in good agreement with the efficiency by the soil arching mechanism.  相似文献   

16.
This article studies the effect of dynamic cyclic loading and surcharge preloading method on the post-construction settlement of low embankments. Soil samples obtained from the soft ground under an embankment were consolidated by surcharge preloading followed by static and dynamic cyclic loading in the odometer. The results show that the consolidation deformation of the soil samples is independent of the frequency of the dynamic cyclic loading, which was simulated to follow the half-sine wave, and this is consistent with the energy concept. The post-construction settlement increases with increasing amplitude of cyclic load and the effectiveness of surcharge preloading depends on the difference between magnitude of surcharge and amplitude of the cyclic load. Based on the consolidation theory combined with the test results, a formula has been proposed to compute the post-construction settlement of a low embankment under cyclic loading.  相似文献   

17.
In this artice, the influence of clay content on the wave-induced liquefaction in marine sediments was reported. The one-dimensional (1-D) equipment was setup with a vertical cylinder and 1.8–m–thick clayey sandy deposit and 0.2–m–thick water above the deposit. Unlike the previous experimental study for a single soil layer, this study used sand-kaolin mixtures, sand-illite mixtures, and sand-bentonite mixtures as the experimental samples. A series of experiments with 3,000 wave cycles in each test were conducted under numerous wave and soil conditions, which allowed us to examine the influence of clay content (CC) on wave-induced liquefaction in marine sediments. The experimental results showed that the clayey sandy deposit will become prone to liquefaction with the increase of CC when CC is less than a critical value, which depends on the type of clay. However, when CC is greater than the critical value, liquefaction depth will decrease as CC increases. Furthermore, when the CC value reaches a certain level, liquefaction will not occur. For example, no liquefaction occurs when CC ≥ 33% for both kaolin-sand and illite-sand mixtures and CC ≥ 16.36% for bentonite-sand mixtures.  相似文献   

18.
Abstract

In practice, how to quickly improve the bearing capacity of piles in a short time is of great significance. In view of this, a technique of setting grooves and installing PVDs (prefabricated vertical drains) at the surface of the pile is proposed in this investigation to accelerate the consolidation of the surrounding soil. A radial and circular consolidation model is established for permeable piles. The finite cosine transform, finite Weber transform, and discretization method are used to obtain a semi-analytical solution for the consolidation model with a mixed drainage boundary condition at the surface of the pile. The sensitivity of the consolidation process to the strip number and the width of PVDs is discussed. The results show that the technique of installing PVDs in piles could potentially improve the bearing capacity. When the area of drainage channels is fixed, the bearing capacity of permeable piles can be more effectively improved by using a higher strip number of PVDs and a smaller PVD width.  相似文献   

19.
由于桩-网复合地基的结构形式比较复杂,难以采用解析法求得其应力和位移。利用有限差分法对某桩-网法路堤进行了数值模拟,并取得了较好结果。计算结果显示,桩间土沉降线为悬链线,与现场位移监测结果吻合较好;桩身弯矩和桩土应力反映了桩-网复合地基的一些受力机理。分析认为,桩间土沉降较大的主要原因是由土体本身压缩及桩侧弯引起的。  相似文献   

20.
Abstract. Sponges from muddy and dctritic bottoms along the coasts of Liguria and Tuscany (Western Méditerranean) were studied to 700 m depth. The distribution of the 66 species identified was compared with depth, geographic location, as well as type of bottom and benthic community in order to determine whether a typical sponge fauna exists in these environments. The most common species (Suberites carnosus, S.ficus, Thenea muricata) are characteristic soft bottom dwellers, but the remaining sponge fauna seems to be linked to the presence of small patches of hard substrate scattered on these bottoms. As a consequence, the neighbouring hard bottom biocoenoses may remarkably affect the composition of this fauna by an export of larvae. Many species are clearly eurybathic, but most were recorded between 50 and 200 m. Type and size of the available substrate for sponge settlement and growth are apparently the most important Écological factors affecting the studied fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号