首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
波浪在混合式海堤上的爬高   总被引:2,自引:0,他引:2  
本文通过模型试验以及对影响波浪爬高诸主要因素的递推分析法,分析了波高、波长、平台宽、平台顶高程、斜坡坡比及相对水深等因素对混合式海堤上波浪爬高的影响,并给出了计算波浪爬高的经验公式。  相似文献   

2.
本文在海堤模型试验研究的基础上,分析了平台宽度和平台高程对波浪爬高的影响,得出了具有平台斜坡上波浪爬高的经验计算式。  相似文献   

3.
波浪爬高随消波平台宽度变化的一种现象   总被引:1,自引:0,他引:1  
陈来华 《海岸工程》1989,8(2):42-45
笔者在水槽中用带平台的复坡式海堤进行断面要素和堤前波要素对波浪爬高影响的试验中,发现在某些条件下,随平台加宽,波浪爬高起先减小,然后增加,接着又减小。在试验范围内,增加的数值已达到0.41米。就笔者接触到的文献中,均未提及这一现象,现有的波浪爬高计算公式中也未予考虑,如果忽视,可能会对海堤工程的安全产生不良后果。  相似文献   

4.
为了研究波浪非线性对爬高的影响,解决防波堤等工程设计的实际问题,通过对数学模型试验、物理模型试验、规范公式得到的防波堤波浪爬高对比分析,分析了非线性主要影响参数厄塞尔数、相对水深和波陡对波浪爬高的影响规律,指出规范公式计算时存在的缺陷,并对其计算公式、适用范围进行修正、拟合,得到了强非线性规则波浪爬高的计算方法,可适用于斜坡堤断面的波浪爬高计算,与物理模型试验和数学模型试验结果对比表明,新的波浪爬高计算公式具有较好的计算精度,研究结果可为防波堤等实际工程设计提供重要参考。  相似文献   

5.
本文试验研究了胜利油田已建海堤三种典型断面和几种新堤结构方案的抗浪性能。比较系统地研究了护面结构型式、反压平台厚度和宽度、潮位变化以及堤面坡度等对波浪爬高和护面结构稳定性的影响。验证了计算波浪爬高的方法,得出了必要的参数。还测定了作用于顶墙上的波浪力,为设计提供依据。  相似文献   

6.
波浪的方向分布对波浪的传播及其与工程结构物的作用都具有明显影响,目前现有的研究大多是基于单向波浪进行的。为了研究方向分布对群墩结构上的爬高影响,基于规则波浪与群墩作用的理论解,结合多向不规则波浪的造波方法,建立了多向不规则波浪与群墩作用的计算模型,同时进行了物理模型试验对模型的有效性进行了验证。系统地对群墩周围及表面上的波浪爬高进行了计算分析,结果表明,方向分布对波浪爬高具有较大的影响,且不同位置处的影响并不相同,在实际的工程设计中如果按照单向波浪计算,可能低估或者高估群墩周围的爬高。  相似文献   

7.
波浪爬高   总被引:1,自引:0,他引:1  
本文论述了斜面坡度、波陡、堤前水深对规则波爬高的影响。认为可以用伊里巴伦数I_r来区分堤前波浪运动形态的变化。利用本次室内模型试验的数据,得到了斜坡和陡墙上的波浪爬高曲线以及斜坡上波浪爬高计算公式。  相似文献   

8.
波浪爬高的测量是海岸环境监测中的一项重要内容,文中介绍一种采用视频方式测量波浪爬高的方法,并给出波浪爬高时间堆栈图像上端边缘曲线的提取步骤,为进一步求解波浪爬高的相关参数打下基础。  相似文献   

9.
漫堤是天文潮、风暴潮与海浪等物理要素作用于海堤后海水翻越海堤的物理过程。本文利用天文潮-风暴潮-台风浪耦合模式(ADCIRC+SWAN)、基于非结构三角形网格和高分辨率地理数据(海堤位置和高程、岸线和水深等)构建福建沿海精细化漫堤风险等级评估系统。该系统在近岸网格分辨率最高达50m,可精确刻画福建沿海复杂地形。利用模拟的水位与海浪参数,采用波浪爬高公式计算得到各海堤堤前波浪爬高。按照总水位与波浪爬高之和与海堤高程的对比,将漫堤风险分为五个等级。对2013年的超强台风天兔过程进行后报检验。结果显示,该系统计算的漫堤情况与灾后调查的漫堤实况基本一致,结果准确,说明本研究中采用的漫堤风险评估标准和方法是可行的。在此基础上,设计了4种不同的台风强度等级,对福建沿海206条海堤进行了漫堤风险等级评估,探究台风强度对漫堤风险的影响。结果表明:波浪爬高对漫堤风险的影响高于单纯的风暴潮增水;风暴潮增水随台风强度的增强增量较小,对于漫堤的风险影响较小;福建沿海波浪爬高普遍较高,随着台风强度的增强,波浪爬高会显著增加漫堤的风险等级,且应重视台风浪对海堤造成的冲击所导致的溃堤灾害。本研究可为沿海防灾减灾提供科学依据。  相似文献   

10.
采用不规则波生波技术模拟珠江三角洲快速客船实测船行波,分别在波浪水槽和波浪水池中进行了船行波模拟试验研究。确定了不同波要素、不同入射角以及不同护岸坡比、平台宽窄、护面层结构等对船行波在斜坡护岸上的爬高影响,取得了船行波在斜坡式护岸上爬高的经验关系式。为珠江三角洲内河航道快速客船船行波作用下护坡的设计提供参考依据。  相似文献   

11.
This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up.  相似文献   

12.
A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping discharge variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping discharge is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes.  相似文献   

13.
《Ocean Engineering》2004,31(11-12):1577-1589
The basic principle involved in the design of S-shaped breakwater is the provision of a wide berm at or around the water level with smaller size armor stones than that used in conventional design, which are allowed to reshape till an equilibrium slope is achieved. An attempt is made to assess the influence of wave height, wave period, and berm width on the stability of S-shaped breakwater with reduced (30% reduction in armor stone weight) armor unit weight. From the investigation, it is found that the berm breakwater with 30% reduced armor weight would be stable for the design wave height if the berm width is 60 cm and wave period 1.2 s. For higher wave periods studied, zero damage wave height reduces by 20–40% of the design wave height. Wave period has large influence on the stability of berm breakwaters. The runup increases with decrease in weight up to Wo/W=0.9.  相似文献   

14.
Reliable estimation of wave run-up is required for the effective and efficient design of coastal structures when flooding or wave overtopping volumes are an important consideration in the design process. In this study, a unified formula for the wave run-up on bermed structures has been developed using collected and existing data. As data on berm breakwaters was highly limited, physical model tests were conducted and the run-up was measured. Conventional governing parameters and influencing factors were then used to predict the dimensionless run-up level with 2% exceedance probability. The developed formula includes the effect of water depth which is required in understanding the influence of sea level rise and consequent changes of wave height to water depth ratio on the future hydraulic performance of the structures. The accuracy measures such as RMSE and Bias indicated that the developed formula is more accurate than the existing formulas. Additionally, the new formula was validated using field measurements and its superiority was observed when compared to the existing prediction formulas. Finally, the new design formula incorporating the partial safety factor was introduced as a design tool for engineers.  相似文献   

15.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   

16.
The berm recession of a reshaping berm breakwater has a very important role for the stability of this kind of structure. Based on a 2D experimental modeling method in a wave flume, the recession of the berm due to sea state and structural parameters has been studied. Irregular waves with a JONSWAP spectrum were used. A total of 215 tests have been performed to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession. In this paper, first a new dimensionless parameter is introduced to evaluate the combined effect of wave height and wave period on berm recession using results of the experimental work. Then, a formula that includes some sea state and structural parameters is derived using the new dimensionless parameter for estimating the berm recession. A comparison is made between the estimated berm recessions by this new formula and formulae given by other researchers to show the preference of using the new dimensionless parameter. The comparison shows that the recession estimated by the new formula has not only a better correlation with the present experimental data, but also has an improved correlation with other experimental results within the range of parameters tested. Outside the range of parameters tested the Lykke Andersen (2006) formula performed best.  相似文献   

17.
不同沉积物养护海滩对台风响应的差异性研究   总被引:2,自引:2,他引:0  
本文通过对厦门天泉湾人工卵石滩和会展人工沙滩在1614“莫兰蒂”超强台风影响前后的典型剖面监测,结合水文动力要素的观测和数值模拟,计算了台风影响过程的波浪场、总水位,分析了剖面形态和台风过程的剖面平均变化量。结果表明,强潮海岸人工卵石滩与人工沙滩对台风响应的特征明显不同,人工卵石滩横向上大部分卵石向岸输移堆积,滩面侵蚀,滩肩堆积形成更高的风暴滩肩,坡度明显变陡。而人工沙滩则表现为明显的沉积物离岸输运,上部滩面侵蚀,下部滩面淤积,滩面坡度明显变缓,受台风登陆后的强烈向岸风作用,滩肩顶有所夷平,滩肩高度变化很小。海滩滩肩在台风过程中是否侵蚀与台风登陆和影响过程的总水位(天文潮、风暴增水、波浪爬高)密切相关,两个人工海滩的风暴响应模式均为冲蚀;台风影响过程中,波浪能量相对强、滩面坡度相对陡的人工卵石滩比人工沙滩的剖面平均变化量小,对于台风的响应程度小,在强侵蚀高能海岸采用砾石等粗粒径沉积物进行海滩养护是减缓砂质海滩侵蚀的一种有效手段。  相似文献   

18.
The main idea concerned with the design of berm breakwaters is to construct a less expensive structure with reshaping berm. An experimental study on the front slope stability of homogeneous berm breakwaters has been carried out in a large number of 2D model tests at Tarbiat Modares University. In this paper, the results of this experimental study are presented conjointly with a formula for estimation of berm recession as the most important parameter for describing the reshaping. This includes the influence of wave height and period, storm duration, berm width and elevation variations on the stability of berm breakwater with different armor stone sizes. A total of 222 tests have been performed to cover the impact of these parameters. According to the present research, one can observe that considering different armor stone sizes, berm width is a significant parameter concerning reshaping of a berm breakwater that has not been covered in previous works, so that as the berm width increases the amount of berm recession decreases. To assess the validity of the present formula, comparisons are made between the estimated berm recessions by this formula and formulae given by other researchers, showing that the estimation procedure foretells berm recession well according to the present data. It is observed that the recession estimated by the present formula has comparatively better correlation with the present experimental data, and also with other experimental results within the range of parameters tested.  相似文献   

19.
The goal of this study is to estimate the efficiency of dewatering operations in Alassio Beach, north Italy by following an integrated approach which included beach volume calculations, daily mapping of the shoreline position, examination of specific beach widening events and daily comparisons of morphodynamic characteristics of the drained beach versus a control section which included wave run-up, bar patterns, rip migration, evolution of the berm and cusp morphology.  相似文献   

20.
Breakwaters with a berm can significantly reduce overtopping and reduce the required rock size compared to straight slopes without a berm. Here, the stability of rock slopes with a horizontal berm has been studied by means of physical model tests to provide information on the required rock size. The tests and analysis are focussed on the slope above the berm as well as the slope below the berm. Also the stability of the rock at the berm is addressed. The influence of the slope angle (1:2 and 1:4), the width of the berm, the level of the berm, and the wave steepness has been investigated. Based on the test results prediction formulae have been derived to quantify the required rock size for rubble mound breakwaters with a berm. Especially for the slope above the berm, the rock size can be reduced significantly compared to straight slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号