首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用土工静力-动力液压三轴-扭转多功能剪切仪,针对饱和黏土,在不固结不排水(uu)条件下进行了应力控制式循环扭剪和竖向-扭转耦合试验,通过对试验结果的对比分析探讨了初始预剪应力和应力反向对应力-应变关系特性的影响。并阐述了不同循环应力模式下孔隙水压力发展特性。试验结果表明初始预剪应力对循环应力-应变关系的模式有明显的影响,当初始预剪应力较大且没有应力反向发生时,变形以累积效应为主,当初始剪应力为0时,变形以循环效应为主;不固结不排水条件下的循环孔隙水压力总是在围压附近波动,孔压的波动范围似乎随循环应力的增大而增大,但不具有孔压累积升高的特点。综合考虑剪切变形和正向偏差变形的共同效应,同时为了能够反映平均残余变形和循环变形的影响,建议了一个综合应变破坏标准的算式。进而通过利用试验数据与目前常用的应变标准比较,表明这种破坏标准具有普遍适用性和较好的稳定性,适用于判定各种应力条件下黏土试样破坏及其强度。  相似文献   

2.
利用大连理工大学的“土工静力-动力液压-三轴扭转多功能剪切仪”,针对相对密实度为70%的福建标准砂,在不排水条件下控制试验过程中的中主应力系数保持不变,进行了不同初始固结应力条件下不同主应力方向的单调剪切试验.以此着重探讨了主应力方向及初始固结应力对饱和密砂单调剪切特性的影响,研究表明,主应力方向和初始固结应力对于密砂的有效应力路径和应力-应变关系均具有十分显著的影响.通过与饱和松砂不排水单调剪切特性的对比分析,探讨了初始相对密实度对砂土剪切特性的影响,研究表明随着主应力方向角增大,密砂的应变硬化效应逐渐减弱,但未出现松砂对应的应变软化现象.  相似文献   

3.
针对海床在波浪荷载作用下的应力状态,利用大连理工大学的"土工静力-动力液压-三轴扭转多功能剪切仪",针对相对密实度为70%的福建标准砂进行了一系列应力控制式轴向一扭转双向耦合的不排水循环剪切试验试。通过分别控制轴向与扭转应力幅值,研究了椭圆形主应力轴旋转应力路径下两个剪切分量对饱和砂土的动强度及其剪切特性的影响。结合所得试验结论,说明了目前广泛用于动强度分析的循环剪应力表达式无法正确反映椭圆形主应力轴旋转应力路径下的动强度,并提出了一个新的动应力表达式用于分析复杂应力路径的动强度特性。  相似文献   

4.
饱和粉土在低围压下剪切特性的试验研究   总被引:1,自引:0,他引:1  
章伟  林霖  冯秀丽  董攀 《海洋科学》2006,30(8):94-97
通过室内静三轴试验,对黄河水下三角洲埕岛海域沉积物———粉土的剪切特性进行了研究。比较了粉土在低围压和高围压下的剪切变形特性和强度特性。试验结果表明,粉土在低围压(10,20,30,40 kPa)下的应力应变曲线和高围压下的应力应变曲线总体趋势基本一致,但在不同围压下其抗剪强度存在差别。  相似文献   

5.
水合物开采可能诱发海底滑坡或其他工程地质灾害。实现水合物商业化开采需要中长期稳定产气,长期荷载下储层的蠕变特性是地层稳定性评价的基础力学参数。利用南海水合物储层粉黏土为试验介质在压缩加载条件下的系列固结排水蠕变测量试验结果,对粉黏土的蠕变特性进行了分析。结果表明,加载过程中,含水合物沉积物经历瞬时变形、固结变形和蠕变变形3个阶段;随着加载应力和水合物饱和度的提高,蠕变应变不断增加;修正的Singh-Mitchell蠕变模型可以较好预测不同应力水平和水合物饱和度下粉黏土的蠕变特性。  相似文献   

6.
为研究饱和海积黏土在均匀与不均匀波浪荷载作用下的循环特性,利用GDS空心圆柱扭剪仪进行了一系列不排水试验,在相同的初始固结状态下,对试样施加不同最大偏应力qmax、最小偏应力qmin的圆形及螺旋形应力路径的轴—扭联合循环载荷。分析了在考虑主应力轴旋转时,这两种不同应力路径的循环应力比RCS与动应力比δ=qmim/qmax对循环加载期间土体动力特性的影响。试验结果表明:RCSδ的增大均能提升黏土在波浪荷载下的孔压、轴向应变、双幅剪切应变及其速率,同时也能使土体轴向回弹模量与动剪切模量的衰减更严重,且δ的作用效果会随RCS的增大而增大。当RCS≤0.05时,土体在循环期间保持为“弹性安定或塑性安定”状态;而当RCS≥0.06时,土体会处于“疲劳破坏”或“塑性蠕变”状态,其具体形式由RCSδ共同决定。土体在循环过程中的轴向回弹模量与动剪切模量近似呈一定比例。  相似文献   

7.
辽东湾S2冰侧限剪切强度的试验研究   总被引:3,自引:0,他引:3  
利用试验方法系统地研究了辽东湾S2型海冰侧限剪切强度随剪切应变速率、加载方向、法向应力、温度和冰内孔隙率的变化规律。介绍了S2型海冰各向异性特点及剪切应变速率对剪切破坏方式的效应和韧脆破坏转变的条件。分析了不同加载方向海冰峰值剪切强度的差异 ,获得 - 6 2℃温度下S2冰内摩擦角和内聚力分别为 42°和 70 0kPa。利用统计分析给出峰值剪切强度与冰温和孔隙率的试验关系  相似文献   

8.
卤水体积和应力速率影响下海冰强度的统一表征   总被引:1,自引:1,他引:0  
无论在地球物理尺度下研究海冰的动力学演化特性,还是在工程结构尺度下分析海冰与海洋结构物的相互作用过程,海冰强度均是影响海冰宏观变形和细观破坏规律的重要力学参数。本文通过对渤海海冰物理力学性质的现场和室内试验,分析了海冰压缩、弯曲和剪切强度参数与卤水体积、应力速率的对应关系。试验结果表明,海冰强度与卤水体积更好地呈指数关系,与应力速率呈线性关系;在此基础上,本文建立了由卤水体积和应力速率共同表征的海冰强度统一函数关系,为工程领域对海冰强度的选取提供有力的参考依据。  相似文献   

9.
选用杭州湾广泛分布的浅层粉土为研究对象,进行了一系列动三轴加载试验,研究了结构性、加载频率及动应力对杭州湾海底浅层粉土动应变、临界循环应力比和动强度的影响。试验结果表明,同一加载条件下,重塑样比原状样在更小振次内达到破坏,原状样动强度大于重塑样;结构性是影响土样动强度的重要因素,结构性对土样强度的影响随着动应力的增大而增强,随着频率的增大而减弱;加载频率的变化也对试样动力特性有较大影响,随着频率的增大,试样达到破坏所需振次加大,试样临界循环应力比也随之增大。  相似文献   

10.
鉴于海底浅表层软黏土强度测试精细化程度不足的现状,引入流体测试中的流变仪,对青岛海域海底浅表层软黏土开展多组原状和重塑试样的不排水剪切强度试验,通过对比静力触探和微型十字板测试结果,验证了流变仪测试方法的有效性。基于流变仪试验结果,揭示了海底软黏土原状和重塑状态下不排水剪切破坏模式,探讨了海底软黏土不排水剪切强度和灵敏度随埋深及液性指数的发展演变趋势,评价了软黏土的结构性特征。最后,引入含水率与液限之比对海底浅表层软黏土重塑不排水剪切强度进行了归一化分析,为近海海洋开发活动提供技术支撑。  相似文献   

11.
- The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit.  相似文献   

12.
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on saturated soft marine clay in the Yangtze estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotorpic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared to the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does. Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.  相似文献   

13.
The paper presents the results of a series of monotonic and cyclic triaxial shear tests carried out to study the influence of the strain effect and load cycles on the undrained shear strength of a cemented marine clay from the East coast of India. The undrained shear strength of Indian coastal marine clay has been established from a detailed shear testing carried out in three phases. Undisturbed soil samples taken out from the seabed were used in the test. In the first part, a comprehensive monotonic shear testing has been carried out under both stress-controlled and strain rate-controlled conditions. In the second phase on identical soil specimen, undrained cyclic shear tests were carried out at various cyclic stress ratios (CSR) and these stress levels are chosen in such a way so that no failure occurred during testing. In the final phase post cyclic monotonic shear testing was conducted to qualitatively evaluate the damage caused by cyclic loading. The monotonic shear test results bring out the influence of cementation that can be detected by the stress-controlled test. The cyclic stress results are analysed in terms of CSR. Further, the results are correlated in terms of stress path.  相似文献   

14.
Abstract

Hollow cylinder torsional shear tests on loose isotropically and anisotropically consolidated calcareous sand were conducted to investigate the cyclic behavior under three different linear stress paths, including horizontal line, oblique line, and vertical line stress paths, in a coordinate system of the normal stress difference and the horizontal shear stress. The dominant strain components of the isotropically consolidated specimens are affected by the stress paths. With increasing consolidation stress ratio, axial strain gradually becomes the dominant strain component under the three different stress paths. The cyclic strength of the isotropically consolidated specimens under the three different stress paths are almost the same, while for the anisotropically consolidated specimens, the cyclic strengths are strongly affected by the stress paths. These results indicate that conventional cyclic triaxial tests may overestimate cyclic strength in some cases. Irrespective of the stress paths and cyclic stress ratios, the terminal residual excess pore pressure ratio decreases with increasing consolidation stress ratio. Moreover, an empirical equation is proposed to describe the relationship between the normalized shear work and the normalized residual excess pore pressure ratio. The comparative study reveals that the relationship proposed for silica sand is not suitable for the dynamic analyses of calcareous sand.  相似文献   

15.
The behaviors of granular material and influencing factors under complex dynamic loading are studied by more and more researchers with particle flow method. Only the strain-controlled loading has been generally used in the current study, although this method was not consistent with the practice of engineering in many situations. In this article, stress-controlled dynamic simulation tests were carried out with particle flow method, which were used to study the collapse characteristics of silt under mutation of principal stress orientation. The tests were performed by PFC2D. The simulation results and the laboratory real tests’ results had a high degree of similarity, particularly in the collapse strain and vibration times. It was very useful to forecast the silt's critical failure state. Based on the verification data, the effects of confining pressure and cyclic shear stress ratio on the collapse characteristics of silt were studied further. With the increase of cyclic shear stress ratio, the deviator strain amplitude increased and the required vibration times gradually reduced to achieve the same strain level. Under the same dynamic shear stress ratio and vibration times, the initial dynamic elastic modulus slightly increased with the increase of initial confining pressure, and the variation range of final collapse deviator strain was small. In the analysis of micro-structural evolution, the redistribution of internal stress of sample was revealed during cyclic loading. With the increase of vibration times, the development of distribution gradually stabilized, and then the high shear stress appeared in some connected regions. On that stage, the particle system developed to instability and failure. The PFC simulation results confirmed that the collapse state was the critical stage to trigger the liquefaction of silt.  相似文献   

16.
Abstract

Under seismic loading, the soil layer is subjected to multidirectional cyclic shear stress with different amplitudes and frequencies because of the coupling of multiple shear waves and the soil element within a slope or behind a retaining wall is subjected to initial static shear stress before subjected to cyclic loading. Due to the complexity of seismic loading propagation, a phase difference exists between the initial static shear stress and cyclic shear stress. To investigate the influence of the phase difference and initial static shear stress on cyclic shear strain, cyclic modulus, and cyclic strength, a series of laboratory tests are performed on Wenzhou marine soft clay by multi-directional simple shear system, which can simulate the actual state better by controlling the horizontal cyclic stress in the x and y directions simultaneously. As the phase difference varies from 0° to 90°, the dynamic shear modulus increases and cyclic strain accumulation decreases with an increasing number of cycles. The shear strain increases with the initial shear stress.  相似文献   

17.
An angle exists between the initial static shear stress and cyclic shear stress when embankment and retaining walls are subjected to cyclic loadings. To investigate the influence of this angle on the dynamic properties of marine soft clay, tests were performed on Wenzhou soft clay. When the angle was varied from 0° to 90°, the shear strain and excess pore pressure decreased as θ increased while increased as θ increased from 120° to 180°. Shear strain developed more rapidly when θ was 120°, 150°, or 180° than that when θ was 0°, 30°, or 60°. These results indicate that the number of cycles to failure at the larger angles was greater than at the smaller angles. When θ was 90°, the strain in the x-axis direction increased as the number of cycles increased. The development of the excess pore pressure associated with specimen failure was different for different cyclic shear stress ratios and shearing angles. The effect of θ on the strain and excess pore pressure increased as the cyclic shear stress ratio increased.  相似文献   

18.
The deformation behavior and shear strength of soft marine clays subjected to wave or traffic loads are different from that in triaxial loading due to the changes of major principal stress direction β and intermediate principal stress coefficient b. To investigate the anisotropy affected by β and b in natural soft marine clay, a series of drained tests were conducted by hollow cylinder apparatus. The principal stress direction relative to vertical direction were maintained constant under an increasing shear stress, with fixed intermediate principal stress coefficient b. The influence of the b and β on anisotropy of typically Wenzhou intact clay is discussed. It was found that octahedral stress–strain relationships expressed anisotropy with different b and β. The friction angle and deviator stress ratio with different b and β were presented to provide guidance for engineering projects in the coastal zone.  相似文献   

19.
Abstract

Cement soil mixing piles are an effective treatment method for marine soft clay. To investigate the static and dynamic characteristics of the composite soil with cemented soil core, a series of experiments are carried out by using the cyclic simple shear test. The result shows that, the static shear strain showed strain hardening, cemented soil core can improve static shear strength of composite soil, vertical stress can enlarge reinforcement of cemented soil core. The tendency of strain development of composite soil with different area replacement ratios under cyclic loading is the same as that of pure clay, existing critical cyclic stress ratios corresponding to different area replacement ratios. In addition, improving area replacement ratio can increase cyclic strength. At same time, adding of cemented soil core does not change shape of hysteresis curve compared with it for clay either. Moreover, cemented soil core can also obstruct stiffness softening. Through regression analysis of the experimental data, relationship between cyclic number and soil softening index is proved to be linear. The results can give a reference for the dynamic characters of the marine soft clay foundation with cement soil mixing piles.  相似文献   

20.
Degradation in Cemented Marine Clay Subjected to Cyclic Compressive Loading   总被引:1,自引:0,他引:1  
The influence of cyclic loading on the strength and deformation behavior of cemented marine clay has been studied. This marine clay is of recent Pleistocene origin and deposited in a shallow water marine environment. Open pits were dug in sheeted enclosures and from these pits, undisturbed samples were taken for strength testing. A series of standard triaxial shear tests and stress controlled one-way cyclic load tests were conducted at consolidation stress ranges below and above the preconsolidation pressure. For the stress levels below the preconsolidation pressure, the cyclic loading has brought about the collapse of the cementation bond through an increase in strains, and at higher pressure ranges, the soil behaves like typical soft clay. This experiment studied the rate of development of strain and pore water pressure and shows that rate is a function of number of cycles, applied stress, and stress history. In addition, soil degradation during cyclic loading is studied in terms of Degradation Index. Attempt has been made to predict stain, pore water pressure, and degradation index through an empirical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号