首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Recent laboratory experiments on interstellar dust analogues have shown that H2 formation on dust-grain surfaces is efficient in a range of grain temperatures below 20 K. These results indicate that surface processes may account for the observed H2 abundance in cold diffuse and dense clouds. However, high abundances of H2 have also been observed in warmer clouds, including photon-dominated regions (PDRs), where grain temperatures may reach 50 K, making the surface processes extremely inefficient. It was suggested that this apparent discrepancy can be resolved by chemisorption sites. However, recent experiments indicate that chemisorption processes may not be efficient at PDR temperatures. Here we consider the effect of grain porosity on H2 formation, and analyse it using a rate-equation model. It is found that porosity extends the efficiency of the recombination process to higher temperatures. This is because H atoms that desorb from the internal surfaces of the pores may re-adsorb many times and thus stay longer on the surface. However, this porosity-driven extension may enable efficient H2 formation in PDRs only if porosity also contributes to significant cooling of the grains, compared to non-porous grains.  相似文献   

2.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

3.
We consider sulphur depletion in dense molecular clouds, and suggest hydrated sulphuric acid, H2SO4 ·  n H2O, as a component of interstellar dust in icy mantles. We discuss the formation of hydrated sulphuric acid in collapsing clouds and its instability in heated regions in terms of the existing hot core models and observations. We also show that some features of the infrared spectrum of hydrated sulphuric acid have correspondence in the observed spectra of young stellar objects.  相似文献   

4.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

5.
We present an in-depth analysis of molecular excitation in 11 H2-bright planetary and protoplanetary nebulae (PN and PPN). From newly acquired K -band observations, we extract a number of spectra at positions across each source. H2 line intensities are plotted on 'column density ratio' diagrams so that we may examine the excitation in and across each region. To achieve this, we combine the shock models of Smith, Khanzadyan & Davis with the photodissociation region (PDR) models of Black & van Dishoeck to yield a shock-plus-fluorescence fit to each data set.
Although the combined shock + fluorescence model is needed to explain the low- and high-energy H2 lines in most of the sources observed (fluorescence accounts for much of the emission from the higher-energy H2 lines), the relative importance of shocks over fluorescence does seem to change with evolutionary status. We find that shock excitation may well be the dominant excitation mechanism in the least evolved PPN (CRL 2688 – in both the bipolar lobes and in the equatorial plane) and in the most evolved PN considered (NGC 7048). Fluorescence, on the other hand, becomes more important at intermediate evolutionary stages (i.e. in 'young' PN), particularly in the inner core regions and along the inner edges of the expanding post-asymptotic giant branch (AGB) envelope. Since H2 line emission seems to be produced in almost all stages of post-AGB evolution, H2 excitation may prove to be a useful probe of the evolutionary status of PPN and PN alike. Moreover, shocks may play an important role in the molecular gas excitation in (P)PN, in addition to the low- and/or high-density fluorescence usually attributed to the excitation in these sources.  相似文献   

6.
The Cepheus A star-forming region has been investigated through a multiline H2S and SO2 survey at millimetre wavelengths. Large-scale maps and high-resolution line profiles reveal the occurrence of several outflows. Cep A East is associated with multiple mass-loss processes: in particular, we detect a 0.6-pc jet-like structure which shows for the first time that the Cep A East young stellar objects are driving a collimated outflow moving towards the south.
The observed outflows show different clumps associated with definitely different H2S/SO2 integrated emission ratios, indicating that the gas chemistry in Cepheus A has been altered by the passage of shocks. H2S appears to be more abundant than SO2 in high-velocity clumps, in agreement with chemical models. However, we also find quite small H2S linewidths, suggestive of regions where the evaporated H2S molecules had enough time to slow down but not to freeze out on to dust grains. Finally, comparison between the line profiles indicates that the excitation conditions increase with the velocity, as expected for a propagation of collimated bow shocks.  相似文献   

7.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

8.
Compact regions of enhanced HCO+ and NH3 emission have been detected close to a number of Herbig–Haro objects. An interpretation of these detections is the following: a transient clump within the molecular cloud has been irradiated by the shock that generates the Herbig–Haro object. The irradiation releases icy mantles from the grains within the transient clump and initiates a photochemistry. On the basis of this picture, we have developed an extensive chemical model which predicts that a wide range of species, other than NH3 and HCO+, should also be detectable. These include CH3OH, H2S, C3H4, H2CO, SO, SO2, H2CS and NS. The chemical effects should last ∼  104 yr  .  相似文献   

9.
We present ISOPHOT observations of eight interstellar regions in the 60–200 μm wavelength range. The regions belong to mostly quiescent high-latitude clouds and have optical extinction peaks from   AV ∼1–6 mag  . From the 150- and 200-μm emission, we derived colour temperatures for the classical big grain component which show a clear trend of decreasing temperature with increasing 200-μm emission. The 200-μm emission per unit   AV   , however, does not drop at lower temperatures. This fact can be interpreted in terms of an increased far-infrared (FIR) emissivity of the big grains. We developed a two-component model including warm dust with the temperature of the diffuse interstellar medium (ISM) of   T = 17.5 K  , and cold dust with   T = 13.5 K  and FIR emissivity increased by a factor of >4. A mixture of the two components can reproduce the observed colour variations and the ratios   I 200/ AV   and  τ200/ AV   . The relative abundance of small grains with respect to the big grains shows significant variations from region to region at low column densities. However, in lines of sight of higher column density, our data indicate the disappearance of small grains, perhaps a signature of adsorption/coagulation of dust. The larger size and porous structure could also explain the increased FIR emissivity. Our results from eight independent regions suggest that these grains might be ubiquitous in the galactic ISM.  相似文献   

10.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

11.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

12.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

13.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

14.
The chemical desorption of an adsorbed CO molecule in the vicinity of H2-forming sites on cosmic dust grains in cold dense clouds is investigated theoretically, mainly using a model based on a classical molecular dynamics computational simulation. As a model surface for icy mantles of dust grains, an amorphous water ice slab is generated at 10 K, and the first and the second H atoms are thrown on to the model surface to reproduce the recombination process of the two H atoms, H+H→H2. Then, the time and space dependence of the local temperature increase of icy mantles caused by the release of H2 formation energy in the vicinity of H2-forming sites is examined. It is found that icy mantles are heated locally up to about 30 K in the surface region at R 4 Å and about 20 K at 4 R 6 Å, where R is the distance from the H2-forming site. The critical temperature of CO desorption is estimated to be about 20–30 K under conditions in typical dense clouds, which might be seen to be comparable to the above result. However, the lifetime of local heating of icy mantles is found to be too short, compared with the time-scale of CO desorption (1013 s) and that for H2 forming in the vicinity of an adsorbed CO molecule (more than 2×1013 s). Thus, it is found that the efficiency of chemical desorption of CO on a large dust grain is negligible. On the other hand, chemical desorption can occur on a small dust grain with size less than 20 Å.  相似文献   

15.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

16.
We present measurements of several near-infrared emission lines from the nearby galaxy NGC 253. We have been able to measure four H2 lines across the circumnuclear starburst, from which we estimate the ortho- to para- ratio of excited H2 to be ∼2. This indicates that the bulk of the H2 emission arises from photodissociation regions (PDRs), rather than from shocks. This is the case across the entire region of active star formation.
As the H2 emission arises from PDRs, it is likely that the ratio of H2 to Brγ (the bright hydrogen recombination line) is a measure of the relative geometry of O and B stars and PDRs. Towards the nucleus of NGC 253 the geometry is deduced to be tightly clustered O and B stars in a few giant H  II regions that are encompassed by PDRs. Away from the nuclear region, the geometry becomes that of PDRs bathed in a relatively diffuse ultraviolet radiation field.
The rotation curves of 1–0 S(1) and Brγ suggest that the ionized gas is tracing a kinetic system different from that of the molecular gas in NGC 253, particularly away from the nucleus.  相似文献   

17.
Water (H2O) ice is an important solid constituent of many astrophysical environments. To comprehend the role of such ices in the chemistry and evolution of dense molecular clouds and comets, it is necessary to understand the freeze-out, potential surface reactivity and desorption mechanisms of such molecular systems. Consequently, there is a real need from within the astronomical modelling community for accurate empirical molecular data pertaining to these processes. Here we give the first results of a laboratory programme to provide such data. Measurements of the thermal desorption of H2O ice, under interstellar conditions, are presented. For ice deposited under conditions that realistically mimic those in a dense molecular cloud, the thermal desorption of thin films (≪50 molecular layers) is found to occur with zeroth-order kinetics characterized by a surface binding energy, E des, of 5773 ± 60 K, and a pre-exponential factor, A , of 1030 ± 2 molecules cm−2 s−1. These results imply that, in the dense interstellar medium, thermal desorption of H2O ice will occur at significantly higher temperatures than has previously been assumed.  相似文献   

18.
We have computed the time dependence of the H2 rovibrational emission spectrum from molecular outflows. This emission arises in shock waves generated by the impact of jets, associated with low-mass star formation, on molecular gas. The shocks are unlikely to have attained a state of equilibrium, and so their structure will exhibit both C- and J-type characteristics. The rotational excitation diagram is found to provide a measure of the age of the shock; in the case of the outflow observed in Cepheus A West by the ISO satellite, the shock age is found to be approximately 1.5×103 yr. Emission by other species, such as NH3 and SiO, is also considered, as are the intensities of the fine-structure transitions of atoms and ions.  相似文献   

19.
An upper limit of the column density of the C5 linear molecule in translucent interstellar clouds is estimated from high-resolution ( R =80 000) and very high signal-to-noise ratio (∼1000) echelle spectra. It is 1012 cm−2 per E ( B − V )=1 (two orders of magnitude lower than that of C2).  相似文献   

20.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号