首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In western part of the CEIM (Central-East Iranian Microcontinent) (Bayazeh area, Isfahan province, Iran), a series of Paleozoic basaltic rocks, occur. Major minerals of these basalts are olivine, clinopyroxene (diopside, augite), plagioclase (albite), sanidine, amphibole (kaersutite), phlogopite, ilmenite and magnetite. Secondary minerals include epidote, pumpellyite, albite, calcite and chlorite. Olivine and clinopyroxene are as phenocryst, while feldspars are restricted to groundmass. Chemical composition of clinopyroxenes indicates crystallization during ascending of magma. Geochemical analysis of whole rock samples shows that these rocks are characterized by low SiO2 (43.21–48.45 wt %), high TiO2 (1.81–3.00 wt %) and P2O5 (0.18–0.34 wt %). Petrography, chemistry of clinopyroxenes and whole rock analyses reveal an alkaline nature of these basalts. They are enriched in alkalis (Na2O + K2O = 4.1–7.7 wt %), LILE, HFSE and LREE. The Bayazeh alkali-basalts present strong enrichment in LREE relative to HREE (La/Lu ratio = 77.6–119.6) and were dominantly derived from partial melting of a metasomatized asthenospheric garnet-amphibole lherzolite. Field relationships reveal that junction of faults in west of the Bayazeh prepared a suitable path for ascending of magma from deep regions to surface and intra-plate continental magmatism. The Paleo-Tethys subduction from lower to upper Paleozoic is too enough for mantle enrichment in volatiles and basaltic alkaline magmatisrn in upper Paleozoic of Bayazeh area.  相似文献   

2.
 Solid solutions of (Fe,Mn)TiO3 were synthesized, mostly at 0.10 XMn intervals, at 1 bar, 900°C and log f O 2 = –17.50. Analysis by EMP indicate an ideal stoichiometry for the Fe-Mn ilmenites with (Fe+Mn) = Ti = 1.000 when normalized to 3 oxygens. Their unit cell volume increases linearly with XMn. The composition of Fe-Mn ilmenite coexisting with metallic Fe and rutile was reversed at 1 bar, 700–900°C and fixed f O 2 in a gas-mixing furnace. Oxygen fugacity was controlled by mixing CO2 and H2 gas and was continuously monitored with an yttrium-stabilized zirconia electrolyte. Solution properties of Fe-Mn ilmenite were derived from the experimental data by mathematical programming (Engi and Feenstra, in preparation) including notably the results of Fe-Mn exchange experiments between ilmenite and garnet (Feenstra and Engi, submitted) and anchoring the standard state properties to the updated thermodynamic dataset of Berman and Aranovich (1996). The thermodynamic analysis resulted in positive deviations from ideality for (Fe,Mn)TiO3 ilmenite, which is well described by an asymmetric Margules model with WH FeFeMn = –9.703 and WH FeMnMn = –23.234 kJ/mol, WS FeFeMn = –19.65 and WS FeMnMn = –22.06 J/(K·mol). The excess free energy for Fe-Mn ilmenite derived from the redox reversals is larger than in the symmetric ilmenite model (WG FeMn = +2.2 kJ/mol) determined by O'Neill et al. from emf measurements on the assemblage iron-rutile-(Fe,Mn)ilmenite. Received: 10 January 1996 / Accepted: 11 July 1996  相似文献   

3.
Co-genetic pegmatites associated with the granite of the Kawadgaon area in the Bastar craton, Central India, contain a wide range of ore minerals of Nb, Ta, Be, Sn, Zr, Ti, and REE, including columbite-tantalite, ixiolite, pseudo-ixiolite, wodginite, tapiolite, microlite, fersmite, euxenite, aeschynite, beryl, cassiterite, monazite, xenotime, zircon, ilmenite, triplite, and magnetite. There is a distinct vertical zonation between the rare metal and tin pegmatites in apical parts of the host granite. Geochemically, these are LCT-S type, beryl-columbite-phosphate pegmatites that have notably high contents of SiO2 (av. 73.80%), Rb (av. 381 ppm), and Nb (av. 132 ppm). The investigated granites probably were derived from the melting of older crustal rocks, as indicated by a high initial 87Sr/86Sr isotopic ratio, and the major-element geochemistry of the granites and pegmatites. Plots of mol. CaO/(MgO+FeOt) vs. mol. Al2O3/(MgO+FeOt) suggest that the source rock was pelitic metasediments. Based on the available data, it is postulated that the derivation of pegmatites from the parent granite occurred shortly after granite emplacement in the late Archaean-early Proterozoic (~2500 Ma). The K/Rb, Ba/Rb, and Rb/Sr ratios of the felsic bodies reveal that a substantial part of the granite formed from evolved melts, and further fractionation produced the co-genetic pegmatites and associated rare metal and rare earth deposits.  相似文献   

4.
F, Cl, S and P were determined, using electron microprobe, in magmatic inclusions trapped within minerals and glass mesostasis from Wudalianchi volcanic rocks. The initial volcanic magma from Wudalianchi corresponds to the basanitic magma crystallized near the surface ( pressure < 91 Mpa ). The potential H2O content of this magma is in the range 2 — 4 wt. %. The initial composition of volcanic magmas varies regularly from early to late volcanic events. From the Middle Pleistocene to the recent eruptions (1719 – 1721 yr.), the basicity of volcanic magma tends to increase, as reflected by an increase in MgO and CaO contents and by a progressive decrease in SiO2 and K2O contents. Meanwhile. from early (Q2 ) to late (Q3) episodic eruptions of the Middle Pleistocene, the initial concentrations of chlorine in volcanic magmas range from 1430 – 1930 ppm to 1700 ppm and decrease to 700 — 970 ppm for the first episodic eruption during the Holocene (Q 4 1 ). The chlorine concentrations of volcanic magmas of recent eruption (Q 4 2 ) are increased again to 2600 – 2870 ppm. A parallel evolution trend for phosphorus and chlorine concentrations in magmas has been certified: 1500 – 5970 ppm (Q2)→ 3500 – 4210 ppm (Q3)→ 1100– 3500 ppm (Q 4 1 )→ 6800– 7900 ppm (Q 4 2 ). The fluorine contents of volcanic magmas, from early to late volcanic events, show the same trend: 770 – 2470 ppm → 200–700 ppm → 700 – 800 ppm. During the crystallization-evolution of volcanic magmas, fluorine and phosphorus tend to be enriched in residual magmas as a result of crystal-melt differentiation. for example. the fluorine contents reach 5000– 6800 ppm and the phosphorus contents, 2.93wt.% in residual magmas. An appreciable amount of chlorine may be lost from water rich volcanic magmas prior to eruption as a result of degassing. Apparently, water serves as a gas carrier for the chlorine. The chlorine contents of residual magmas may decrease to 100 – 300 ppm. The volcanic magmas from Wudalianchi are poor in sulfur, normally ranging from 200 to 400ppm. On account of the behavior of sulfur in magmas and the strontium and oxygen isotopic analyses ((87Sr /86Sr)i=0.70503– 0.70589; δ18O = + 5.50 – + 6.89 ‰ ), it can be considered that the basanitic magmas in the Wudalianchi volcanic area came from the upper mantle and have not yet been contaminated probably by continental crust materials.  相似文献   

5.
ZnSiO3 clinopyroxene stable above 3 GPa transforms to ilmenite at 10–12 GPa, which further decomposes into ZnO (rock salt) plus stishovite at 20–30 GPa. The enthalpy of the clinopyroxene-ilmenite transition was measured by high-temperature solution calorimetry, giving ΔH0=51.71 ±3.18 kJ/mol at 298 K. The heat capacities of clinopyroxene and ilmenite were measured by differential scanning calorimetry at 343–733 and 343–633 K, respectively. The C p of ilmenite is 3–5% smaller than that of clinopyroxene. The entropy of transition was calculated using the measured enthalpy and the free energy calculated from the phase equilibrium data. The enthalpy, entropy and volume changes of the pyroxene-ilmenite transition in ZnSiO3 are similar in magnitude to those in MgSiO3. The present thermochemical data are used to calculate the phase boundary of the ZnSiO3 clinopyroxene-ilmenite transition. The calculated boundary,
  相似文献   

6.
Late Archaean to Palaeoproterozoic felsic magmatic lithounits exposed in the central part of the Bundelkhand massif have been mapped and their redox series (magnetite vs ilmenite series) evaluated based on magnetic susceptibility (MS) data. The central part of Bundelkhand massif comprises of multiple felsic magmatic pulses (∼2600–2200 Ma), commonly represented by coarse grained granite (CGG-grey granite, CPG-pink granite), medium grained pink granite (MPG), fine grained pink granite (FPG), grey and pink rhyolites and granite porphyry (GP). However, the pink colour of these felsic rocks is the result of hydrothermal fluid-flushing leading to potassic alteration of grey granites. MS values of CGG vary from 0.058 to 14.75×10−3 SI with an average of 6.35×10−3 SI, which mostly represent oxidized type, magnetite series (73%) granites involving infracrustal (igneous) source materials. CPG (av. MS=3.95×10−3 SI) is indeed a pink variety of CGG, the original oxidizing nature of which must have been similar to the bulk of CGG, but has been moderately to strongly reduced because of distinctly more porphyritic nature together with partial assimilation of metapelitic (supracrustal) materials, surmicaceous enclaves, carbonaceous material included in the source materials, and to some extent, induced by hydrothermal and later deformational processes. MPG (av. MS= 1.15×10−3 SI) as lensoidal stock-like bodies intrudes the CPG and represent both magnetite series (18%) and ilmenite series (82%) granites, which are probably formed by heterogeneous (mixed) source rocks. GP (av. MS=6.26×10−3 SI) occur as dykes (mostly trending NE-SW) intrudes the MPG, CPG and migmatites and bears the nature similar to oxidized type, magnetite series granite. FPG (av. MS= 0.666×10−3 SI) trending NE-SW occur as lensoid bodies including a large outcrop, is intrusive into both CPG and MPG, and is moderately to very strongly reduced type, ilmenite series granites, which may be derived by the melting of metapelitic crustal sources. FPG hosting microgranular (mafic magmatic) enclaves commonly exhibit high MS values (7.31–10.22×10−3 SI), which appear induced by the mixing and mingling of interacting felsic and mafic magmas prevailed in an open system. Grey (av. MS=10.30×10−3 SI) and pink (av. MS=6.72×10−3 SI) rhyolites represent oxidized type, magnetite series granites, which may have been derived from infracrustal (magmatic) protoliths. Granite series evaluation of felsic magmatic rocks of central part of Bundelkhand massif strongly suggests their varied redox conditions (differential oxygen fugacity) mostly intrinsic to magma source regions and partially modified by hydrothermal and tectonic processes acting upon them.  相似文献   

7.
Intrusions of the Irtysh Complex are spatially restricted to the regional Irtysh Shear Zone (ISZ) and are hosted in blocks of high-grade metamorphic rocks (Kurchum, Predgornenskii, Sogra, and others) in the greenschist matrix of the ISZ. The massifs consist of contrasting rock series from gabbro to plagiogranite and granite at strongly subordinate amounts of diorite and the practical absence of rocks of intermediate composition (tonalite and granodiorite). The complex was produced in the Early Carboniferous, simultaneously with the onset of the origin of the ISZ itself. The granitoids composing the complex affiliate with diverse petrochemical series (from subaluminous plagiogranite of the andesite series to granite of the calc-alkaline series) and contain similar REE and HFSE concentrations [total REE = 103–163 ppm (La/Yb) n = 3.59–5.44, Zr (200–273 ppm), Nb (7.6–10.6 ppm), Hf (6.1–7.6 ppm), and Ta (0.68–1.19 ppm)] but are different in concentrations in LILE [Rb (3–9 and 121–221 ppm), Sr (213–375 and 77–148 ppm), and Ba (67–140 and 240–369 ppm)] and isotopic composition of Nd (ɛNd(T) from +5.3 in the plagiogranite to −1.2 in the granite) and O (δ18O from +9.4 in the plagiogranite to +14.5 in the granite). Data on the geochemistry and isotopic composition of metamorphic rocks of the Kurchum block and numerical geochemical simulations indicate that the granitoids were generated via the melting of a heterogeneous crustal source, which consisted of upper crustal metapelites and metabasites of the oceanic basement of the blocks of high-grade metamorphic rocks. The differences in the chemical and isotopic compositions of the granitoids were predetermined by the mixing of variable proportions of granitoid magmas derived from metapelite and metabasite sources.  相似文献   

8.
Nature of the crust in Maine,USA: evidence from the Sebago batholith   总被引:7,自引:0,他引:7  
 Neodymium and lead isotope and elemental data are presented for the Sebago batholith (293±2 Ma), the largest exposed granite in New England. The batholith is lithologically homogeneous, yet internally heterogeneous with respect to rare earth elements (REE) and Nd isotopic composition. Two-mica granites in the southern/central portion of the batholith (group 1) are characterized by REE patterns with uniform shapes [CeN/YbN (chondrite normalized) = 9.4–19 and Eu/Eu* (Eu anomaly) = 0.27–0.42] and ɛ Nd(t) = −3.1 to −2.1. Peripheral two-mica granites (group 2), spatially associated with stromatic and schlieric migmatites, have a wider range of total REE contents and patterns with variable shapes (CeN/YbN = 6.1–67, Eu/Eu* = 0.20–0.46) and ɛ Nd(t) = −5.6 to −2.8. The heterogeneous REE character of the group 2 granites records the effects of magmatic differentiation that involved monazite. Coarse-grained leucogranites and aplites have kinked REE patterns and low total REE, but have Nd isotope systematics similar to group 2 granites with ɛ Nd(t) = −5.5 to −4.7. Rare biotite granites have steep REE patterns (CeN/YbN = 51–61, Eu/Eu* = 0.32–0.84) and ɛ Nd(t) = −4.6 to −3.8. The two-mica granites have a restricted range in initial Pb isotopic composition (206Pb/204Pb = 18.41–18.75; 207Pb/204Pb = 15.60–15.68; 208Pb/204Pb = 38.21–38.55), requiring and old, high U/Pb (but not Th/U) source component. The Nd isotope data are consistent with magma derivation from two sources: Avalon-like crust (ɛ Nd>−3), and Central Maine Belt metasedimentary rocks (ɛ Nd<−4), without material input from the mantle. The variations in isotope systematics and REE patterns are inconsistent with models of disequilibrium melting which involved monazite. Received: 8 December 1995 / Accepted: 29 April 1996  相似文献   

9.
The electrical conductivity of (Mg0.93Fe0.07)SiO3 ilmenite was measured at temperatures of 500–1,200 K and pressures of 25–35 GPa in a Kawai-type multi-anvil apparatus equipped with sintered diamond anvils. In order to verify the reliability of this study, the electrical conductivity of (Mg0.93Fe0.07)SiO3 perovskite was also measured at temperatures of 500–1,400 K and pressures of 30–35 GPa. The pressure calibration was carried out using in situ X-ray diffraction of MgO as pressure marker. The oxidation conditions of the samples were controlled by the Fe disk. The activation energy at zero pressure and activation volume for ilmenite are 0.82(6) eV and −1.5(2) cm3/mol, respectively. Those for perovskite were 0.5(1) eV and −0.4(4) cm3/mol, respectively, which are in agreement with the experimental results reported previously. It is concluded that ilmenite conductivity has a large pressure dependence in the investigated P–T range.  相似文献   

10.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   

11.
The Sakharjok Y-Zr deposit in Kola Peninsula is related to the fissure alkaline intrusion of the same name. The intrusion ∼7 km in extent and 4–5 km2 in area of its exposed part is composed of Neoarchean (2.68–2.61 Ma) alkali and nepheline syenites, which cut through the Archean alkali granite and gneissic granodiorite. Mineralization is localized in the nepheline syenite body as linear zones 200–1350 m in extent and 3–30 m in thickness, which strike conformably to primary magmatic banding and trachytoid texture of nepheline syenite. The ore is similar to the host rocks in petrography and chemistry and only differs from them in enrichment in zircon, britholite-(Y), and pyrochlore. Judging from geochemical attributes (high HSFE and some incompatible element contents (1000–5000 ppm Zr, 200–600 ppm Nb, 100–500 ppm Y, 0.1–0.3 wt % REE, 400–900 ppm Rb), REE pattern, Th/U, Y/Nb, and Yb/Ta ratios), nepheline syenite was derived from an enriched mantle source similar to that of contemporary OIB and was formed as an evolved product of long-term fractional crystallization of primary alkali basaltic melt. The ore concentrations are caused by unique composition of nepheline syenite magma (high Zr, Y, REE, Nb contents), which underwent subsequent intrachamber fractionation. Mineralogical features of zircon-the main ore mineral—demonstrate its long multistage crystallization. The inner zones of prismatic crystals with high ZrO2/HfO2 ratio (90, on average) grew during early magmatic stage at a temperature of 900–850°C. The inner zones of dipyramidal crystals with average ZrO2/HfO2 = 63 formed during late magmatic stage at a temperature of ∼500°C. The zircon pertaining to the postmagmatic hydrothermal stage is distinguished by the lowest ZrO2/HfO2 ratio (29, on average), porous fabric, abundant inclusions, and crystallization temperature below 500°C. The progressive decrease in ZrO2/HfO2 ratio was caused by evolution of melt and postmagmatic solution. The metamorphic zircon rims relics of earlier crystals and occurs as individual rhythmically zoned grains with an averaged ZrO2/HfO2 ratio (45, on average) similar to that of the bulk ore composition. The metamorphic zircon is depleted in uranium in comparison with magmatic zircon, owing to selective removal of U by aqueous metamorphic solutions. Zircon from the Sakharjok deposit is characterized by low concentrations of detrimental impurities, in particular, contains only 10–90 ppm U and 10–80 ppm Th, and thus can be used in various fields of application.  相似文献   

12.
The Younger Granites of Yahmid-Um Adawi area, located in the southeastern part of Sinai Peninsula, comprise two coeval Late Neoproterozoic post-collisional alkaline (hypersolvous alkali-feldspar granites; 608–580?Ma) and calc-alkaline (transsolvous monzo- and syenogranites; 635–590?Ma) suites. The calc-alkaline suite granitoids are magnesian and peraluminous to metaluminous, whereas the alkaline ones are magnesian to ferroan alkaline to slightly metaluminous. Both granitoid suites exhibit many of the typical geochemical features of A-type granites such as enrichment in Nb (>20?ppm), Zr (>250?ppm), Zn (>100?ppm) and Ce (>100?ppm) and high 10000*Ga/Al2O3 ratios (>2.6) and Zr?+?Nb?+?Y?+?Ce (>350?ppm). Accessory mineral saturation thermometers demonstrated former crystallization of apatite at high temperatures prior to zircon and monazite separation from the magma for both granitoid suites. The mild zircon saturation temperatures of the studied Younger Granites (around 800?°C) imply low-temperature crustal fusion and incomplete melting of the largely refractory zircon. The two Younger Granite suites were semi-synchronously evolved during the post-collisional stage of the Arabian-Nubian Shield subsequent to the collision between the juvenile shield crust and the older pre-Neoproterozoic continental blocks of west Gondwana. Their parental magmas has been generated by melting of crustal source rocks with minor involvement from mantle, which might participated chiefly as a source of heat necessary for fusion of the crustal precursor. Extensive in-situ gamma-ray spectrometry revealed anomalously high radioactivity of some Younger Granite exposures along Wadi Um Adawi (eU; 388–746?ppm and eTh; 1857–2527?ppm) and pegmatitic pockets pertaining to the calc-alkaline suite (equivalent U and Th; 212–252?ppm and 750–1757?ppm, respectively). The radioactivity of the syngenetic pegmatites arises from the primary radioactive minerals uranothorite and thorite together with the U- and/or Th-bearing minerals zircon, columbite, samarskite and monazite. The anomalously high radioactivity of some Younger Granite exposures in Wadi Um Adawi stem from their appreciable enclosure of the epigenetic uranium minerals metatorbenite and uranophane.  相似文献   

13.
Summary Fe-Ti-P-rich rocks (FTP) are unusual with respect to their mineralogy and bulk composition. Varieties of these rocks are mostly related to Proterozoic massif-type anorthosites and to a lesser extent to the upper parts of mafic-ultramafic intracratonic layered complexes and other igneous rock suites. We present results on the geology, mineralogy and geochemistry of a new occurrence of FTP, associated with mafic rocks in the northwestern part of Iran. The Qareaghaj mafic-ultramafic intrusion (QMUI) is a small igneous body situated between Palaeozoic sedimentary rocks and a Precambrian low grade metamorphic complex. The QMUI is composed mainly of non-mineralized mafic and apatite- and Fe-Ti oxide-rich ultramafic rocks. The mafic rocks, mainly coarse-grained gabbro, microgabbro and amphibolite, have a simple mineral assemblage (plagioclase + clinopyroxene + ilmenite) and based on field observations, mineralogy and chemical composition are comagmatic. The ultramafic rocks with high proportion of olivine (∼40–66 vol.%), apatite (∼0.1–16 vol.%), ilmenite (∼11–19 vol.%) and magnetite (∼2–13 vol.%), have unusual bulk compositions (e.g., SiO2 ∼ 21–30 wt.%, total iron expressed as Fe2O3 tot ∼ 26–42 wt.%, TiO2 ∼ 5–11 wt.%, MgO ∼ 9–20 wt.%, P2O5 up to 5.1 wt.%, Cr ∼ 40–160 ppm, Ni ∼ 7–73 ppm). The FTP forms numerous sill-like layers, ranging in thickness from ∼5 cm to few meters. These rocks, totally enclosed in mafic rocks with sharp and concordant contacts, show a magmatic lamination and follow the general NW–SE trend of QMUI. The apatite-rich ultramafic rocks makes up 90–95% of the total ultramafic outcrops and contain Mg-poor olivine (Mg# ∼ 40–58) and low-Mg spinel (Mg# ∼ 30–44) in contrast to apatite-poor ones (∼60–63 and ∼43–46, respectively). Field relationships, mineral compositions and geochemical data suggested that the FTP are not related to the mafic host rocks. On the contrary, they intruded latter into the gabbros during plastic, high temperature deformation in local shear zones. Fractional crystallization of P-rich ferrobasaltic parental magma at depth, probably in an open magmatic system, not far from the QMUI magma chamber, is considered as responsible for the formation of the evolved FTP in QMUI.  相似文献   

14.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

15.
The U–Pb ages, REE content, and oxygen isotopic composition of zircon rims developed within a major shear zone in the Kalak Nappe Complex (KNC), Arctic Norway have been determined along with the age of monazite crystals. Different generations of granitic veins have been distinguished based on both field criteria and monazite ages of 446 ± 3 and 424 ± 3 Ma. Within each of these veins, inherited zircon cores are mantled by homogeneous low CL-response zircon rims which yield a range of concordant U–Pb dates of ca. 470–360 Ma. Significant numbers of zircon rims coincide with the timing of monazite crystallization. The zircon rims have moderate light REE enrichment compared to cores, distinctive (Sm/La) n values of less than 12, and La between 0.3 and 10 ppm. This indicates free elemental exchange between newly formed zircon rims and the surrounding matrix. The rims have calculated accumulated alpha-radiation dosages corresponding with a crystalline structure and δ18O values of 1‰. This implies rim crystallization directly from a zirconium-saturated hydrothermal fluid which was modified by some silicate melt. Growth of the zircon rims was prolonged and locally variable due to preferential fluid flow. A third type of zircon can be recognized, forming both rims and cores, with high alpha-radiation doses, and significant enrichment in La, Pr, and Eu. These are interpreted as low-temperature hydrothermally altered metamict zircons. The high volatile input and partial melting in the shear zone favoured prolonged zircon rim growth due to its ability to easily nucleate on inherited seeds. On the other hand, monazite, susceptible to dissolution and re-growth, crystallized in brief episodes, as has been predicted from theoretical phase diagrams. From a regional perspective, these results elucidate cryptic Ar–Ar cooling ages, providing the first record of a Late Ordovician heating and cooling phase within the KNC prior to the climactic Scandian collision.  相似文献   

16.
The phase boundary between MnTiO3 I (ilmenite structure) and MnTiO3 II (lithium niobate structure) has been determined by analysis of quench products from reversal experiments in a cubic anvil apparatus at 1073–1673 K and 43–75 kbar using mixtures of MnTiO3 I and II as starting materials. Tight brackets of the boundary give P(kbar)=121.2−0.045 T(K). Thermodynamic analysis of this boundary gives ΔHo=5300±1000 J·mol−1, ΔSo = 1.98 ±1J·K−1· mol−1. The enthalpy of transformation obtained directly by transposed-temperature-drop calorimetry is 8359 ±2575 J·mol−1. Possible topologies of the phase relations among the ilmenite, lithium niobate, and perovskite polymorphs are constrained using the above data and the observed (reversible with hysteresis) transformation of II to III at 298 K and 20–30 kbar (Ross et al. 1989). The observed II–III transition is likely to lie on a metastable extension of the II–III boundary into the ilmenite field. However the reversed I–II boundary, with its negative dP/ dT does represent stable equilibrium between ilmenite and lithium niobate, as opposed to the lithium niobate being a quench product of perovskite. We suggest a topology in which the perovskite occurs stably at low T and high P with a triple point (I, II, III) at or below 1073 K near 70 kbar. The I–II boundary would have a negative P-T slope while the II–III and I–III boundaries would be positive, implying that entropy decreases in the order lithium niobate, ilmenite, perovskite. The inferred positive slope of the ilmenite-perovskite transition in MnTiO3 is different from the negative slopes in silicates and germanates. These thermochemical parameters are discussed in terms of crystal structure and lattice vibrations.  相似文献   

17.
Five Cu–Au epidote skarns are associated with the Mt. Shea intrusive complex, located in the 2.7–2.6 Ga Eastern Goldfields Province of the Archean Yilgarn craton, in greenstones bounded by the Boulder Lefroy and Golden Mile strike-slip faults, which control the Golden Mile (1,435 t Au) at Kalgoorlie and smaller “orogenic” gold deposits at Kambalda. The Cu–Au deposits studied are oxidized endoskarns replacing faulted and fractured quartz monzodiorite–granodiorite. The orebodies are up to 140 m long and 40 m thick. Typical grades are 0.5% Cu and 0.3 g/t Au although parts are richer in gold (1.5–4.5 g/t). At the Hannan South mine, the skarns consist of epidote, calcite, chlorite, magnetite (5–15%), and minor quartz, muscovite, and microcline. Gangue and magnetite are in equilibrium contact with pyrite and chalcopyrite. The As–Co–Ni-bearing pyrite contains inclusions of hematite, gold, and electrum and is intergrown with cobaltite and Cu–Pb–Bi sulfides. At the Shea prospect, massive, net-textured, and breccia skarns are composed of multistage epidote, actinolite, albite, magnetite (5%), and minor biotite, calcite, and quartz. Gangue and magnetite are in equilibrium with Co–Ni pyrite and chalcopyrite. Mineral-pair thermometry, mass-balance calculations, and stable-isotope data (pyrite δ34SCDT = 2.5‰, calcite δ13CPDB = −5.3‰, and δ18OSMOW = 12.9‰) indicate that the Cu–Au skarns formed at 500 ± 50°C by intense Ca–Fe–CO2–S metasomatism from fluids marked by an igneous isotope signature. The Mt. Shea stock–dike–sill complex postdates the regional D1 folding and metamorphism and the main phase of D2 strike-slip faulting. The suite is calc-akaline and comprises hornblende–plagioclase monzodiorite, quartz monzodiorite, granodiorite, and quartz–plagioclase tonalite porphyry. The intrusions display a wide range in silica content (53–73 wt% SiO2), in ratio (0.37–0.89), and in ratio (0.02–0.31). Chromium (62–345 ppm), Ni (23–158), Sr (311–1361 ppm), and Ba (250–2,581 ppm) contents are high, Sr/Y ratios are high (24–278, mostly >50), and the rare earth element patterns are fractionated . These features and a negative niobium anomaly relative to the normal mid-ocean ridge basalt indicate that the suite formed by hornblende fractionation from a subduction-related monzodiorite magma sourced from metasomatized peridotite in the upper mantle. The magnesian composition of many intrusions was enhanced due to hornblende crystallization under oxidizing hydrous conditions and during the subsequent destruction of igneous magnetite by subsolidus actinolite–albite alteration. At the Shea prospect, main-stage Cu–Au epidote skarn is cut by biotite–albite–dolomite schist and by red biotite–albite replacement bands. Post-skarn alteration includes 20-m-thick zones of sericite–chlorite–ankerite schist confined to two D3 reverse faults. The schists are mineralized with magnetite + pyrite + chalcopyrite (up to 0.62% Cu, 1.6 g/t Au) and are linked to skarn formation by shared Ca–Fe–CO2 metasomatism. Red sericitic alteration, marked by magnetite + hematite + pyrite, occurs in fractured porphyry. The biotite/sericite alteration and oxidized ore assemblages at the Shea prospect are mineralogically identical to magnetite–hematite-bearing gold lodes at Kambalda and in the Golden Mile. Published fluid inclusion data suggest that a “high-pressure”, oxidized magmatic fluid (2–9 wt% NaCl equivalent, , 200–400 MPa) was responsible for gold mineralization in structural sites of the Boulder Lefroy and Golden Mile faults. The sericite–alkerite lodes in the Golden Mile share the assemblages pyrite + tennantite + chalcopyrite and bornite + pyrite, and accessory high-sulfidation enargite with late-stage sericitic alteration zones developed above porphyry copper deposits.  相似文献   

18.
Low-temperature isobaric heat capacities (C p ) of MgSiO3 ilmenite and perovskite were measured in the temperature range of 1.9–302.4 K with a thermal relaxation method using the Physical Properties Measurement System. The measured C p of perovskite was higher than that of ilmenite in the whole temperature range studied. From the measured C p , standard entropies at 298.15 K of MgSiO3 ilmenite and perovskite were determined to be 53.7 ± 0.4 and 57.9 ± 0.3 J/mol K, respectively. The positive entropy change (4.2 ± 0.5 J/mol K) of the ilmenite–perovskite transition in MgSiO3 is compatible with structural change across the transition in which coordination of Mg atoms is changed from sixfold to eightfold. Calculation of the ilmenite–perovskite transition boundary using the measured entropies and published enthalpy data gives an equilibrium transition boundary at about 20–23 GPa at 1,000–2,000 K with a Clapeyron slope of −2.4 ± 0.4 MPa/K at 1,600 K. The calculated boundary is almost consistent within the errors with those determined by high-pressure high-temperature in situ X-ray diffraction experiments.  相似文献   

19.
In the Kolar greenstone belt of the Dharwar craton, felsic metavolcanics are encountered prominently in its eastern region around Surapalli and Marikoppa. These felsic volcanic rocks are essentially homogeneous and their bulk mineralogy is almost the same. They consist of phenocrysts of quartz and feldspar, set in a fine-grained quartzo-feldspathic groundmass. They are calc-alkaline rhyolite in composition, and are characterized by high SiO2 (av. 75.74 wt.%), moderate Al2O3 (av. 11.84 wt.%), Na2O (av. 3.55 wt.%), K2O (av. 3.26 wt%) contents and low Mg# (av. 6.07), Cr (av. 8 ppm), Ni (av. 8 ppm), Sr (av. 331 ppm.), Y (av. 7 ppm), Yb (av. 0.87 ppm) and Nb/Ta (av. 6.40) values, suggesting Tonalite-Trondhjemite-Granodiorite (TTG) affinity for these felsic volcanics. They are strongly fractionated [(La/Yb)N? = 14.41–48.70] with strong LREE enrichment [(La/Sm)N = 2.50-3.59] and strong HREE depletion [(Gd/Yb)N = 1.34–2.77] with positive Eu anomaly. The regional geological set-up, petrographic and geochemical characteristics suggest that these felsic volcanics probably were derived by partial melting of a subducting basalt slab at shallow depth without much involvement of mantle wedge in an island arc geodynamic setting.  相似文献   

20.
Summary ?Detailed petrographic studies and microchemical analyses of titanomagnetite from igneous and metamorphic rocks and ore deposits form the basis of this investigation. Its aim is to compare the data obtained and their interpretations with the experimentally deduced subsolidus oxidation-exsolution model of Buddington and Lindsley (1964). The results are also considered relevant for the interpretation of compositional variations in black sands which are recovered for titanium production. The arrangement of the samples investigated is in accordance with textural stages C1 to C5 caused by subsolidus exsolution with increasing degrees of oxidation (Haggerty, 1991). Stage 1 is represented by two types of optically homogeneous TiO2-rich magnetite: a. An isotropic type considered to represent solid solutions of magnetite and ulvite containing between 5.2 to 27.5 wt% TiO2 corresponding to about 14.7 to 77.7 mol% Fe2TiO4 in solid solution with magnetite. The general formula of this type is Fe2+ 1+x Fe3+ 2−2x Ti x O4 (x = 0.0–1.0). b. The second type which has not been reported so far is anisotropic and shows complex internal twinning resembling inversion textures. It is thus attributed to inversion of a high-temperature ilmenite modification (with statistical distribution of the cations) which forms solid solutions with magnetite. TiO2 varies between 9.3 and 24.5 wt% corresponding to about 17.2 to 43.6 mol% ilmenite in solid solution with magnetite. This type is interpreted as a cation-deficient spinel with the general formula Fe2+ 12/12 + 1/4xFe3+ 24/12 − 3/2x 0 + 1/4x Ti x O4 (x = 0.0–16/12). Isotropic and anisotropic homogeneous magnetites occur in volcanic rocks only; the homogeneity of the solid solutions was explained by fast cooling which prevented the development of exsolution textures. Stages 2 and 3 are represented by magnetite with or without ulvite. The magnetite host contains ilmenite lamellae forming trellis and sandwich textures. In contrast to the requirement of the oxidation-exsolution model, the ilmenite lamellae are concentrated exclusively in the cores of the host crystals. The reverse host-guest relationship may also occur. Stages 4 and 5 are identical with thermally generated martite (= martite due to heating). The textures are characterized by very broad lamellae of ferrian ilmenite or titanohematite dominantly concentrated along the margins of the host crystals. Thermally generated martite is restricted to subsolidus-oxidation reactions. The ilmenite lamellae of trellis and sandwich textures contain low Fe2O3-concentrations (average 4.8 mol%; to a maximum of 8.3), whereas the Fe2O3-content of thermally generated martite is between 32 to 71 mol%. With respect to the Fe2O3-concentrations in the ilmenite lamellae, no transition between the two types was observed. The results of this paper show that the widely accepted oxy-exsolution model of Buddington and Lindsley (1964) which is based on experimental results can – with the exception of thermally generated martite – not explain the tremendous variety of magnetite–ilmenite–ulvite relationships in natural rocks and ore deposits. Received October 16, 2001; accepted May 2, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号