首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

2.
Fluid inclusions have been analysed in successive generations of syn-metamorphic segregations within low-grade, high-pressure, low-temperature (HP–LT) metapelites from the Western Alps. Fluid composition was then compared to mass transfer deduced from outcrop-scale retrograde mineral reactions. Two types of quartz segregations (veins) occur in the `Schistes lustrés' unit: early blueschist-facies carpholite-bearing veins (BS) and retrograde greenschist-facies chlorite-bearing veins (GS). Fluid inclusions in both types of segregations are aqueous (no trace of dissolved gases such as CO2, CH4, N2), with significant differences in density and composition (salinity). BS fluids are moderately saline fluids (average 9.1 wt% eq. NaCl) characterized by a chronological trend towards more dilute composition (from 15 down to 0 wt% eq. NaCl), whereas GS fluids have a very constant salinity of ∼3.7 wt% eq. NaCl. Both types of inclusions were continuously reset to lower densities along the retrograde path, until a temperature of ∼300 °C. Mass-balance calculations, together with fluid inclusion data, suggest that GS fluids result from the mixing between two fluid sources: one initial, early metamorphic, moderately saline HP fluid and a second nearly pure water fluid provided by the breakdown of carpholite. Estimates of the amount of water released by carpholite breakdown result in a dilution of the interstitial fluid phase (from 10 to 2.5–4 wt% eq. NaCl) consistent with the actual shift of the fluid composition. Alkali elements required for the formation of the GS chlorite + phengite assemblage after carpholite could be locally provided by HP phengite. This is taken as an indirect evidence that, during the generation of both BS and GS fluids, mixing with externally derived fluids may have been very limited. The location, amount and constant composition of the less saline GS fluids appear to be related to an interconnected porosity at the time of inclusion formation. Received: 19 October 1998 / Accepted: 19 July 2000  相似文献   

3.
Fluid inclusions in quartz veins of the High-Ardenne slate belt have preserved remnants of prograde and retrograde metamorphic fluids. These fluids were examined by petrography, microthermometry and Raman analysis to define the chemical and spatial evolution of the fluids that circulated through the metamorphic area of the High-Ardenne slate belt. The earliest fluid type was a mixed aqueous/gaseous fluid (H2O–NaCl–CO2–(CH4–N2)) occurring in growth zones and as isolated fluid inclusions in both the epizonal and anchizonal part of the metamorphic area. In the central part of the metamorphic area (epizone), in addition to this mixed aqueous/gaseous fluid, primary and isolated fluid inclusions are also filled with a purely gaseous fluid (CO2–N2–CH4). During the Variscan orogeny, the chemical composition of gaseous fluids circulating through the Lower Devonian rocks in the epizonal part of the slate belt, evolved from an earlier CO2–CH4–N2 composition to a later composition enriched in N2. Finally, a late, Variscan aqueous fluid system with a H2O–NaCl composition migrated through the Lower Devonian rocks. This latest type of fluid can be observed in and outside the epizonal metamorphic part of the High-Ardenne slate belt. The chemical composition of the fluids throughout the metamorphic area, shows a direct correlation with the metamorphic grade of the host rock. In general, the proportion of non-polar species (i.e. CO2, CH4, N2) with respect to water and the proportion of non-polar species other than CO2 increase with increasing metamorphic grade within the slate belt. In addition to this spatial evolution of the fluids, the temporal evolution of the gaseous fluids is indicative for a gradual maturation due to metamorphism in the central part of the basin. In addition to the maturity of the metamorphic fluids, the salinity of the aqueous fluids also shows a link with the metamorphic grade of the host-rock. For the earliest and latest fluid inclusions in the anchizonal part of the High-Ardenne slate belt the salinity varies respectively between 0 and 3.5 eq.wt% NaCl and between 0 and 2.7 eq.wt% NaCl, while in the epizonal part the salinity varies between 0.6 and 17 eq.wt% NaCl and between 3 and 10.6 eq.wt% for the earliest and latest aqueous fluid inclusions, respectively. Although high salinity fluids are often attributed to the original sedimentary setting, the increasing salinity of the fluids that circulated through the Lower Devonian rocks in the High-Ardenne slate belt can be directly attributed to regional metamorphism. More specifically the salinity of the primary fluid inclusions is related to hydrolysis reactions of Cl-bearing minerals during prograde metamorphism, while the salinity of the secondary fluid inclusions is rather related to hydration reactions during retrograde metamorphism. The temporal and spatial distribution of the fluids in the High-Ardenne slate belt are indicative for a closed fluid flow system present in the Lower Devonian rocks during burial and Variscan deformation, where fluids were in thermal and chemical equilibrium with the host rock. Such a closed fluid flow system is confirmed by stable isotope study of the veins and their adjacent host rock for which uniform δ180 values of both the veins and their host rock demonstrate a rock-buffered fluid flow system.  相似文献   

4.
The most important tin mineralization in Thailand is associated with the Late Cretaceous to Middle Tertiary western Thai granite belt. A variety of deposit types are present, in particular pegmatite, vein and greisen styles of mineralization. A feature common to most of the deposits is that they are associated with granites that were emplaced into the Khang Krachan Group, which consists of poorly sorted, carbonaceous, pelitic metasediments. Most of the deposits contain low to moderately saline aqueous fluid inclusions and aqueous-carbonic inclusions with variable CH4/CO2 ratios. Low salinity aqueous inclusions represent trapped magmatic fluid in at least one case, the Nong Sua pegmatite, based on their occurrence as primary inclusions in magmatic garnet. Aqueous-carbonic inclusions are commonly secondary and neither the CO2 nor NaCl contents of these inclusions decrease in progressively younger inclusions, implying that they are not magmatic in origin. Reduced carbon is depleted in the metasediments adjacent to granites and the δD values greisen muscovites are variable, but are as low as −134 per mil, indicative of fluid interaction with organic (graphitic) material. This suggests that the aqueous-carbonic fluid inclusions represent fluids that were produced, at least in part, during contact metamorphism-metasomatism. By comparing the western Thai belt with other Sn-W provinces it is evident that there is a strong correlation between fluid composition and pressure in general. Low to moderately saline aqueous inclusions and aqueous-carbonic inclusions are characteristic of mineralization associated with relatively deep plutonic belts. Mineralized pegmatites are also typically of deeper plutonic belts, and pegmatite-hosted deposits may contain cassiterite that is magmatic (crystallized from granitic melt) or is orthomagmatic-hydrothermal (crystallized from aqueous or aqueous-carbonic fluids) in origin. The magmatic aqueous fluids (those that were exsolved from granitic melts) are interpreted to have had low salinities. As a consequence of the low salinities, tin is partitioned in favour of the melt on vapour saturation. Thus with a high enough degree of fractionation, the crystallization of a magmatic cassiterite (or different Sn phase such as wodginite) is inevitable. Because tin is not partitioned in favour of the vapour phase upon water saturation of the granitic melts, it is proposed that relatively deep vein and greisen systems tend to form by remobilization processes. In addition, many deeper greisen systems are hosted, in part, by carbonaceous pelitic metasediments and the reduced nature of the metasediments may play a key role in remobilizing tin. Sub-volcanic systems by contrast are characterized by high temperature-high salinity fluids. Owing to the high chlorinity, tin is strongly partitioned in favour of the vapour and cassiterite mineralization can form by of orthomagmatic-hydrothermal processes. Similar relationships between the depth of emplacement and fluid composition also appear to apply to other types of granite-hosted deposits, such as different types of molybdenum deposits. Received: 8 September 1997 / Accepted: 28 October 1997  相似文献   

5.
The Olympias Pb-Zn(Au, Ag) sulfide ore deposit, E. Chalkidiki, N. Greece, is hosted by marbles of the polymetamorphic Kerdilia Formation of Paleozoic or older age. The geologic environment of the ore also comprises biotite-hornblende gneisses and amphibolites intruded by Tertiary pegmatite-aplite dikes, lamprophyre dikes, the 30-Ma Stratoni granodiorite, and porphyritic stocks. Only limited parts of the deposit display shear folding and brecciation; most of it is undeformed. Microthermometry of fluid inclusions in gangue syn-ore quartz indicates three types of primary and pseudosecondary inclusions: (1) H2O-rich, 1–18 wt.% NaCl equivalent, <3.6 mol% CO2; (2) H2O-CO2 inclusions, <4wt.% NaCl equivalent, with variable CO2 contents, coexisting in both undeformed and deformed ore; (3) aqueous, highsalinity (28–32 wt,% NaCl equivalent) inclusions found only in undeformed ore. Type 2 inclusions are differentiated into two sub-types: (2a) relatively constant CO2 content in the narrow range of 8–15 mol% and homogenization to the liquid phase; (2b) variable CO2 content between 18 and 50 mol% and homogenization to the vapor phase. Type 1 and 2b inclusions are consistent with trapping of two fluids by unmixing of a high-temperature, saline, aqueous, CO2-bearing fluid of possible magmatic origin, probably trapped in type 2a inclusions. Fluid unmixing and concomitant ore mineralization took place at temperatures of 350 ± 30 °C and fluctuating pressures of less than 500 bar, for both undeformed and deformed ores. The wide salinity range of type 1 inclusions probably represents a complex effect of salinity increase, due to fluid unmixing and volatile loss, and dilution, due to mixing with low-salinity meteoric waters. High solute enrichment of the residual liquid, due to extreme volatile loss during unmixing, may account for high salinity type 3 inclusions. The Olympias fluid inclusion salinity-temperature gradients bear similarities to analogous gradients related to Pb-Zn ores formed in “granite”-hosted, low-T distalskarn, skarn-free carbonate-replacement and epithermal environments.  相似文献   

6.
Fluid inclusions, mineral thermometry and stable isotope data from two types of mineralogically and texturally contrasting pegmatites, barren ones and lithium ones, from the Moldanubian Zone of the Bohemian Massif were studied in order to constrain PT conditions of their emplacement, subsolidus hydrothermal evolution and to estimate composition of the early exsolved fluid and that of the parental melt. Despite the fact that the lithium pegmatites are abundant throughout the crystalline units of the Bohemian Massif, data similar to this paper have not been published yet. The studied pegmatites are hosted by iron-rich calcic skarn bodies. This specific setting allowed scavenging of calcium, fluorine and some other elements from the host rocks into the pegmatitic melts and post-magmatic fluids. Such contamination process was important namely in the case of barren pegmatites, as can be deduced from the variation in anorthite contents in plagioclase and from the presence of fluorite, hornblende (with F content) or garnet in the contact zones of pegmatite dykes. Fluid inclusions were studied mostly in quartz, but also in fluorite, titanite and apatite. Early aqueous–carbonic and late aqueous fluids were identified in both pegmatite types. The PT conditions of crystallization as well as the detailed composition of exsolved magmatic fluid, however, particularly differ. The magmatic fluids associated with barren pegmatites correspond to H2O–CO2 low salinity fluids, composition of which evolved from 20 to 23 to <5 mol% CO2, and from 2 to 4–6 mol% NaCl eq. Sudden decrease in the CO2 content of the post-magmatic fluids (<5 mol% CO2) seems to coincide with the enrichment of the fluid in calcium (from the contamination process) and resulted in precipitation of calcites (frequently found as trapped solid phases in fluid inclusions). The fluids associated with lithium pegmatites are more complex (H2O–CO2/N2–H3BO3–NaCl). The CO2 content of early exsolved fluid is 26–20 mol% CO2 and remains the same in the next fluid generation. The main difference between the magmatic and the first post-magmatic fluids is the presence of 7–9 wt% of H3BO3 (identified as daughter mineral sassolite) in the former. The second post-magmatic fluids are again CO2-poor (∼4 mol%) and more saline (∼4 mol% NaCl eq.). The composition of exsolved fluid was further used to constrain volatile composition and content of the parental melts. Finally, PT conditions of pegmatite crystallization are constrained: 600–640°C and 420–580 MPa for the barren pegmatites and 500–570°C and 310–430 MPa for the lithium pegmatite. While the emplacement of the former occurred in thermal equilibrium with the Moldanubian host rock environment, the emplacement of the later suggests substantial thermal disequilibrium.  相似文献   

7.
Fluid inclusions in coesite‐bearing eclogites and jadeite quartzite at Shuanghe in Dabie Shan, East‐central China, have preserved remnants of early, prograde and/or peak metamorphic fluids, reset during post‐UHP (ultrahigh‐pressure) metamorphic uplift. Inclusions occur in several minerals (e.g. omphacite & epidote), notably as isolated, primary inclusions in quartz included in various host minerals. Two major fluid types have been identified: non‐polar fluid species (N2 or CO2) and aqueous, the latter is by far the most predominant. Aqueous fluids cover a wide range of salinity, from halite‐bearing brines to low salinity fluids. For non‐polar fluids, few N2 inclusions occur in undeformed eclogite, whereas a number of CO2‐rich inclusions have been found in microshear zones of eclogite or jadeite quartzite in close proximity to marble occurrences. The primary character of N2 and high‐salinity aqueous inclusions indicates that they are remnants from UHP metamorphic fluids and for some there is the distinct possibility that they are ultimately derived from pre‐metamorphic fluids. This conclusion is supported by the preservation, in some samples, of microdomains containing synchronous inclusions of variable salinities, which tend to relate to the chemical composition of the host crystal. Carbonic fluids may be derived from neighbouring rocks, notably marble and carbonate‐bearing metasediments, during post‐metamorphic uplift. During post‐UHP exhumation, a limited decrease of the fluid density has occurred, with formation of new sets of fluid inclusions. Fluid movements, however, remained exceedingly limited, at the scale of the enclosing crystal.  相似文献   

8.
Gold ore-forming fluids of the Tanami region, Northern Australia   总被引:1,自引:0,他引:1  
Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260–430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5–5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing inclusions. Calculated δ 18O values for the ore fluids range from 3.8 to 8.5‰ and the corresponding δD values range from −89 to −37‰. Measured δ 13C values from CO2 extracted from fluid inclusions ranged from −5.1 to −8.4‰. These data indicate a magmatic or mixed magmatic/metamorphic source for the ore fluids in the Tanami region. Interpretation of the fluid inclusion, alteration, and structural data suggests that mineralization may have occurred via a number of processes. Gold occurs in veins associated with brittle fracturing and other dilational structures, but in the larger deposits, there is also an association with iron-rich rocks or carbonaceous sediments, suggesting that both structural and chemical controls are important. The major mineralization process appears to be boiling/effervescence of a gas-rich fluid, which leads to partitioning of H2S into the vapor phase resulting in gold precipitation. However, some deposits also show evidence of desulfidation by fluid–rock interaction and/or reduction of the ore-fluid by fluid mixing. These latter processes are generally more prevalent in the higher crustal-level deposits.  相似文献   

9.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

10.
Fluid inclusions that bear halite daughter minerals were discovered in volcanic rocks at Pingnan area in the Dongying sag. The samples of the fluid inclusions collected from the BGX-15 well drill cores are hosted in quartz of diorite-porphyrite. The daughter minerals are identified as NaCl crystals after being observed under a microscope and analyzed by in situ Raman spectroscopy at −185°C. The results of micro-thermal analysis show that the homogenization temperatures of primary fluid inclusions are between 359 and 496°C, and the salinities of fluid inclusions are from 43.26 to 54.51 wt-%. All fluid inclusions in the studied samples can be divided into five types including primary fluid inclusions and secondary fluid inclusions. The fact that five types of fluid inclusions were symbiotic in the same quartz grain implies that immiscibility happened in magma. Due to the decrease in temperature and pressure during the ascent of magma, the fluids became intensively immiscible. This process accelerates the degassing of CO2 from magma, but the remnant fluids with high salinity are preserved in fluid inclusions. Thus, the primary fluid inclusions are mainly in NaCl-H2O fluids and poor in CO2. The results of our study indicate that the degassing of magma and accumulation of CO2 gas at the Pingnan area are relative to the immiscibility of high salinity fluids. This discovery is important because it can help us have a further understanding of the mechanism of magma degassing and accumulation of the inorganic CO2 in eastern China. Translated from Acta Geologica Sinica, 2006, 80(11): 1699–1705 [译自: 地质学报]  相似文献   

11.
The methamorphic history of the Patapedia thermal zone, Gaspé, Quebec, is re-evaluated in the light of results obtained from a study of fluid inclusions contained in quartz phenocrysts of felsic dyke rocks. The thermal zone is characterised by calc-silicate bodies that have outwardly telescoping prograde metamorphic isograds and display extensive retrograde metamorphism with associated copper mineralization. Three distinct fluid inclusion types are recognized: a low to moderate salinity, high density aqueous fluid (Type I); a low density CO2 fluid (Type II); and a high salinity, high density aqueous fluid (Type III). Fluid inclusion Types I and II predominate whereas Type III inclusions form <10% of the fluid inclusion population. All three fluid types are interpreted to have been present during prograde metamorphism. Temperatures and pressures of metamorphism estimated from fluid inclusion microthermometry and isochore calculations are 450°–500° C and 700–1000 bars, respectively. A model is proposed in which the metamorphism at Patapedia was caused by heat transferred from a low to moderate salinity fluid of partly orthomagmatic origin (Type I inclusions). During the early stages, and particularly in the deeper parts of the system, CO2 produced by metamorphism was completely miscible in the aqueous hydrothermal fluid and locally resulted in high XCO2 fluids. On cooling and/or migrating to higher levels these latter fluids exsolved high salinity aqueous fluids represented by the Type III inclusions. Most of the metamorphism, however, took place at temperature-pressure conditions consistent with the immiscibility of CO2 and the hydrothermal fluid and was consequently accompanied by the release of large volumes of CO2 vapour which is represented by Type II inclusions. The final stage of the history of the Patapedia aureole was marked by retrograde metamorphism and copper mineralization of a calcite-free calc-silicate hornfels in the presence of a low XCO2 fluid.  相似文献   

12.
Summary The low-pressure emplacement of a quartz diorite body in the metapelitic rocks of the Gennargentu Igneous Complex (Sardinia, Italy) produced a contact metamorphic aureole and resulted in migmatisation of part of the aureole through partial melting. The leucosome, formed by dehydration melting involving biotite, is characterised by granophyric intergrowth and abundant magnetite crystals. A large portion of the high temperature contact aureole shows petrographic features that are intermediate between quartz diorite and migmatite s.s. (i.e. hybrid rocks). A fluid inclusion study has been performed on quartz crystals from the quartz diorite and related contact aureole rocks, i.e. migmatite sensu stricto (s.s.) and hybrid rocks. Three types of fluid inclusions have been identified: I) monophase V inclusions, II) L + V, either L-rich or V-rich aqueous saline inclusions and III) multiphase V + L + S inclusions. Microthermometric data characterised the trapped fluid as a complex aqueous system varying from H2O–NaCl–CaCl2 in the quartz diorite to H2O–NaCl–CaCl2–FeCl2 in the migmatite and hybrid rocks. Fluid salinities range from high saline fluids (50 wt% NaCl eq.) to almost pure aqueous fluid. Liquid-vapour homogenisation temperatures range from 100 to over 400 °C with an average peak around 300 °C. Temperatures of melting of daughter minerals are between 300 and 500 °C. Highly saline liquid- and vapour-rich inclusions coexist with melt inclusions and have been interpreted as brine exsolved from the crystallising magma. Fluid inclusion data indicate the formation of fluid of high iron activity during the low-pressure partial melting and a fluid mixing process in the hybrid rocks.  相似文献   

13.
The author’s database, which presently includes data from more than 18500 publications on fluid and melt inclusions in minerals and is continuing to be appended, was used to generalize results on physicochemical parameters of the formation of hydrothermal deposits and occurrences of tin and tungsten. The database includes data on 320 tin and tin-tungsten deposits and occurrences and 253 tungsten and tungstentin deposits around the world. For most typical minerals of these deposits (quartz, cassiterite, tungsten, scheelite, topaz, beryl, tourmaline, fluorite, and calcite), histograms of homogenization temperatures of fluid inclusions were plotted. Most of 463 determinations made for cassiterite are in the range of 300–500°C with maximum at 300–400°C, while those for wolframite and scheelite (453 determinations) fall in the range of 200–400°C with maximum at 200–300°C. Representative material on pressures of hydrothermal fluids included 330 determinations for tin and 430 determinations for tungsten objects. It was found that premineral, ore, and postmineral stages spanned a wide pressure range from 70–110 bar to 6000–6400 bar. High pressures of the premineral stages at these deposits are caused by their genetic relation with felsic magmatism. Around 50% of pressure determinations lie in the range of 500–1500 bar. The wide variations in total salinity and temperatures (from 0.1 to 80 wt % NaCl equiv and 20–800°C) were obtained for mineral-forming fluids at the tin (1800 determinations) and tungsten (2070 determinations) objects. Most of all determinations define a salinity less than 10 wt % NaCl equiv. (∼60%) and temperature range of 200–400°C (∼70%). The average composition of volatile components of fluids determined by different methods is reported. Data on gas composition of the fluids determined by Raman spectroscopy are examined. Based on 180 determinations, the fluids from tin objects have the following composition (in mol %): 41.2 CO2, 39.5 CH4, 19.15 N2, and 0.15 H2S. The volatile components of tungsten deposits (190 determinations) are represented by 56.1 CO2, 30.7 CH4, 13.2 N2, and 0.01 H2S. Thus, the inclusions of tungsten deposits are characterized by higher CO2 content and lower (but sufficiently high) contents of CH4 and N2. The concentrations of tin and tungsten in magmatic melts and mineral-forming fluids were estimated from analysis of individual inclusions. The geometric mean Sn contents are 87 ppm (+ 610 ppm/−76 ppm) in the melts (569 determinations) and 132 ppm (+ 630 ppm/−109 ppm) in the fluids (253 determinations). The geometric mean W values are 6.8 ppm (+ 81/−6.2 ppm) in the magmatic melts (430 determinations) and 30 ppm (+ 144 ppm/−25 ppm) in the mineral-forming fluids (391 determinations).  相似文献   

14.
The Darreh‐Zereshk (DZ) and Ali‐Abad (AB) porphyry copper deposits are located in southwest of the Yazd city, central Iran. These deposits occur in granitoid intrusions, ranging in composition from quartz monzodiorite through granodiorite to granite. The ore‐hosting intrusions exhibit intense hydrofracturing that lead to the formation of quartz‐sulfide veinlets. Fluid inclusions in hydrothermal quartz in these deposits are classified as a mono‐phase vapor type (Type I), liquid‐rich two phase (liquid + vapor) type (Type IIA), vapor‐rich two phase (vapor + liquid) type (Type IIB), and multi‐phase (liquid + vapor + halite + sylvite + hematite + chalcopyrite and pyrite) type (Types III). Homogenization temperatures (Th) and salinity data are presented for fluid inclusions from hydrothermal quartz veinlets associated with potassic alteration and other varieties of hypogene mineralization. Ore precipitation occurred between 150° to >600°C from low to very high salinity (1.1–73.9 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized are recognized; one which shows relatively high Th and lower salinity fluid (Type IIIa; Th(L‐V) > Tm(NaCl)); and one which shows lower Th and higher salinity (Type IIIb; Th(L‐V) < Tm(NaCl)). The high Th(L‐V) and salinities of Type IIIa inclusions are interpreted to represent the initial existence of a dense fluid of magmatic origin. The coexistence of Type IIIb, Type I and Type IIB fluid inclusions suggest that these inclusions resulted either from trapping of boiling fluids and/or represent two immiscible fluids. These processes probably occurred as the result of pressure fluctuations from lithostatic to hydrostatic conditions under a pressure of 200 to 300 bar. Dilution of these early fluids by meteoritic water resulted in lower temperatures and low to moderate salinity (<20 wt% NaCl equiv.) fluids (Type IIA). Fluid inclusion analysis reveals that the hydrothermal fluid, which formed mineralized quartz veinlets in the rocks with potassic alteration, had temperatures of ~500°C and salinity ~50 wt% NaCl equiv. Cryogenic SEM‐EDS analyses of frozen and decrepitated ore‐bearing fluids trapped in the inclusions indicate the fluids were dominated with NaCl, and KCl with minor CaCl2.  相似文献   

15.
Fluid inclusions have been studied in three pegmatite fields in Galicia, NW Iberian Peninsula. Based on microthermometry and Raman spectroscopy, eight fluid systems have been recognized. The first fluid may be considered to be a pegmatitic fluid which is represented by daughter mineral (silicates)-rich aqueous inclusions. These inclusions are primary and formed above 500 °C (dissolution of daughter minerals). During pegmatite crystallization, this fluid evolved to a low-density, volatile-rich aqueous fluid with low salinity (93% H2O; 5% CO2; 0.5% CH4; 0.2% N2; 1.3% NaCl) at minimum P–T conditions around 3 ± 0.5 kbar and 420 °C. This fluid is related to rare-metal mineralization. The volatile enrichment may be due to mixing of magmatic fluids and fluids equilibrated with the host rock. A drop in pressure from 3 ± 0.5 to 1 kbar at a temperature above 420 °C, which may be due to the transition from predominantly lithostatic to hydrostatic pressure, is recorded by two-phase, water-rich inclusions with a low-density vapour phase (CO2, CH4 and N2). Another inclusion type is represented by two-phase, vapour-rich inclusions with a low-density vapour phase (CO2, CH4 and N2), indicating a last stage of decreasing temperature (360 °C) and pressure (around 0.5 kbar), probably due to progressive exhumation. Finally, volatile (CO2)-rich aqueous inclusions, aqueous inclusions (H2O-NaCl) and mixed-salt aqueous inclusions with low Th, are secondary in charac- ter and represent independent episodes of hydrothermal fluid circulation below 310 °C and 0.5 kbar. Received: 14 October 1999 / Accepted: 5 October 1999  相似文献   

16.
In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to 10 m in width in the normally garnetiferous Nicholson's Point Granite, are developed adjacent to intrusive contacts with the Port Edward Enderbite and anhydrous pegmatitic veins. Mineralogical differences between the country rock and charnockitic aureole suggest that the dehydration reaction Bt + Qtz → Opx + Kfs + H2O and the reaction of Grt + Qtz → Opx + Pl were responsible for the charnockitization. The compositions of fluid inclusions show systematic variation with: (1) the Port Edward Enderbite being dominated by CO2 and N2 fluid inclusions; (2) the non-charnockitized granite by saline aqueous inclusions with 18–23 EqWt% NaCl; (3) the charnockitic aureoles by low-salinity and pure water inclusions (<7 EqWt% NaCl); (4) the pegmatites by aqueous inclusions of various salinity with minor CO2. As a result of the thermal event the homogenization temperatures of the inclusions in charnockite show a much larger range (up to 390 °C) compared to the fluid inclusions in granite (mostly <250 °C). Contrary to fluid-controlled charnockitization (brines, CO2) which may have taken place along shear zones away from the intrusive body, the present “proximal” charnockitized granite formed directly at the contact with enderbite. The inclusions indicate contact metamorphism induced by the intrusion of “dry” enderbitic magma into “wet” granite resulting in local dehydration. This was confirmed by cathodoluminescence microscopy showing textures indicative for the local reduction of structural water in the charnockite quartz. Two-pyroxene thermometry on the Port Edward Enderbite suggests intrusion at temperatures of ∼1000–1050 °C into country rock with temperature of <700 °C. The temperature of aureole formation must have been between ∼700 °C (breakdown of pyrite to form pyrrhotite) and ∼1000 °C. Charnockitization was probably controlled largely by heat related to anhydrous intrusions causing dehydration reactions and resulting in the release and subsequent trapping of dehydration fluids. The salinity of the metamorphic fluid in the contact zones is supposed to have been higher at an early stage of contact metamorphism, but it has lost its salt content by K-metasomatic reactions and/or the preferential migration of the saline fluids out of the contact zones towards the enderbite. The low water activity inhibited the localized melting of the granite. Mineral thermobarometry suggests that after charnockite aureole genesis, an isobaric cooling path was followed during which reequilibration of most of the aqueous inclusions occurred. Received: 8 November 1998 / Accepted: 21 June 1999  相似文献   

17.
雪鸡坪铜矿床产于印支晚期石英二长闪长玢岩-石英闪长玢岩-石英二长斑岩复式侵入体内,为一斑岩型铜矿床。矿床形成经历了多阶段热液成矿作用,主要有微细脉浸染状黄铁矿±黄铜矿-石英、细脉状辉钼矿±黄铁矿±黄铜矿-石英及微细脉状贫硫化物-石英-方解石等。流体包裹体岩相学、显微测温、激光拉曼及碳、氢、氧同位素综合研究表明,微细脉浸染状黄铁矿±黄铜矿-石英阶段石英中主要发育含Na Cl子矿物三相及气液两相包裹体,与含矿的石英二长斑岩石英中发育的流体包裹体特征相似,表明成矿流体主要为中高温、高盐度Na Cl-H2O体系热液,可能主要来源于印支期石英二长斑岩侵入体;辉钼矿±黄铁矿±黄铜矿-石英中主要发育含CO2三相及气液两相包裹体,成矿流体为中温、低盐度Na Cl-CO2-H2O体系热液,与前者来源明显不同;贫硫化物-石英-方解石石英中主要发育气液两相包裹体,成矿流体为中低温、低盐度Na Cl-H2O体系热液,推测其可能较多来自于大气降水。因此,雪鸡坪铜矿床为不同来源、不同地球化学性质热液叠加成矿作用的结果。  相似文献   

18.
Hydrothermal alteration and mineralization at the Wunugetu porphyry Cu–Mo deposit, China, include four stages, i.e., the early stage characterized by quartz, K-feldspar and minor mineralization, followed by a molybdenum mineralization stage associated with potassic alteration, copper mineralization associated with sericitization, and the last Pb–Zn mineralization stage associated with carbonation. Hydrothermal quartz contains three types of fluid inclusions, namely aqueous (W-type), daughter mineral-bearing (S-type) and CO2-rich (C-type) inclusion, with the latter two types absent in the late stage. Fluid inclusions in the early stage display homogenization temperatures above 510°C, with salinities up to 75.8 wt.% NaCl equivalent. The presence of S-type inclusions containing anhydrite and hematite daughter minerals and C-type inclusions indicates an oxidizing, CO2-bearing environment. Fluid inclusions in the Mo- and Cu-mineralization stages yield homogenization temperatures of 342–508°C and 241–336°C, and salinities of 8.6–49.4 and 6.3–35.7 wt.% NaCl equivalent, respectively. The presence of chalcopyrite instead of hematite and anhydrite daughter minerals in S-type inclusions indicates a decreasing of oxygen fugacity. In the late stage, fluid inclusions yield homogenization temperatures of 115–234°C and salinities lower than 12.4 wt.% NaCl equivalent. It is concluded that the early stage fluids were CO2 bearing, magmatic in origin, and characterized by high temperature, high salinity, and high oxygen fugacity. Phase separation occurred during the Mo- and Cu-mineralization stages, resulting in CO2 release, oxygen fugacity decrease and rapid precipitation of sulfides. The late-stage fluids were meteoric in origin and characterized by low temperature, low salinity, and CO2 poor.  相似文献   

19.
Tungsten mineralisation in the NE Hindu Kush terrain occurs 8 km NW of the Tirich Boundary Zone suture between Karakoram and Eastern Hindu Kush. Scheelite occurs mainly in calc-silicate rocks and subordinately in tourmalinites associated with metasediments at Miniki Gol, Chitral. The investigated area underwent two phases of deformation and was metamorphosed up to sillimanite grade, followed by the emplacement of leucogranite and hydrothermal activity. The mineral assemblages of the calc-silicate rocks, comprising clinozoisite, quartz, calcic-amphibole, plagioclase, chlorite, biotite, calcite, sphene, garnet and scheelite, clearly express a skarn type environment. The coexistence of the scheelite grains with clinozoisite and the occurrence of anomalous values of ZrO2 and Ta2O5 in the scheelite grains imply a genetic link between the scheelite mineralisation and post-magmatic hydrothermal fluids. The enrichment of Zr, Hf, Be, Sn, W, Th, U, Ga, Nb, F and Y along with total REE in the scheelite-bearing calc-silicate rocks compared with the associated metasediments assigns that the rocks at Miniki Gol have undergone a pronounced hydrothermal activity. Strong positive correlations between Zr, Hf, Nb, Y, Ta, F and REE, and the mobility of REE are consistent with this consideration. Aqueous fluid inclusions in the scheelite-bearing calc-silicate rocks display very low salinity, suggesting a mixing of magmatic fluids with meteoric water. The formation of intergrown scheelite and clinozoisite indicates a high pH and CO2-deficient fluid. The tungsten mineralization may be related to the Miniki Gol leucogranite which occurs at a distance of only 400 m.  相似文献   

20.
The Brandberg West region of NW Namibia is dominated by poly-deformed turbidites and carbonate rocks of the Neoproterozoic Damara Supergoup, which have been regionally metamorphosed to greenschist facies and thermally metamorphosed up to mid-amphibolite facies by Neoproterozoic granite plutons. The meta-sedimentary rocks host Damaran-age hydrothermal quartz vein-hosted Sn–W mineralization at Brandberg West and numerous nearby smaller deposits. Fluid inclusion microthermometric studies of the vein quartz suggests that the ore-forming fluids at the Brandberg West mine were CO2-bearing aqueous fluids represented by the NaCl–CaCl2–H2O–CO2 system with moderate salinity (mean=8.6 wt% NaClequivalent).Temperatures determined using oxygen isotope thermometry are 415–521°C (quartz–muscovite), 392–447°C (quartz–cassiterite), and 444–490°C (quartz–hematite). At Brandberg West, the oxygen isotope ratios of quartz veins and siliciclastic host rocks in the mineralized area are lower than those in the rocks and veins of the surrounding areas suggesting that pervasive fluid–rock interaction occurred during mineralization. The O- and H-isotope data of quartz–muscovite veins and fluid inclusions indicate that the ore fluids were dominantly of magmatic origin, implying that mineralization occurred above a shallow granite pluton. Simple mass balance calculations suggest water/rock ratios of 1.88 (closed system) and 1.01 (open system). The CO2 component of the fluid inclusions had similar δ 13C to the carbonate rocks intercalated with the turbidites. It is most likely that mineralization at Brandberg West was caused by a combination of an impermeable marble barrier and interaction of the fluids with the marble. The minor deposits in the area have quartz veins with higher δ 18O values, which is consistent with these deposits being similar geological environments exposed at higher erosion levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号