首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, \(f_{{\text{O}}_{\text{2}} } = 10^{ - 8.87} ,f_{{\text{S}}_{\text{2}} } = 10^{ - 1.02} \) , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of \(f_{{\text{O}}_{\text{2}} } \) and \(f_{{\text{S}}_{\text{2}} } \) .  相似文献   

2.
At pressures which are expected in the earth's crust, the high temperature border of the lawsonite stability field is marked by reaction lawsonite = zoisite + kyanite/andalusite + pyrophyllite + H2O. (1a) The equilibrium data of reaction (1a) have been experimentally determined, and the equilibrium curve is characterized by the following P, T-data: 4 kb; 360±20° C; 5 kb; 375 ±20° C; 7kb;410±20° C. In the P, T diagram the equilibrium curve of reaction lawsonite + quartz = zoisite + pyrophyllite + H2O (6) is very close to the curve of reaction (1a); the distance is smaller than the error stated for curve (1a), i.e. below ±20° C. The stability fields of lawsonite and anorthite + H2O are not adjacent fields in the P, T diagram. This means that no stable reaction of lawsonite to anorthite + H2O can exist. Thus, the CaAl-silicate formed by the decomposition of lawsonite is always zoisite. Further, as shown by experimental determination of reaction calcite + pyrophyllite + H2O = lawsonite + quartz + CO2, (7) lawsonite can coexist with a gas phase only if the CO2 content of the gas phase does not exceed 3±2 Mol-%. This means, for metamorphism of lawsonite glaucophane rocks, that the fluid phase that was present during metamorphism has been quite rich in H2O. Ernst (1971, in press) who applied a different, indirect investigation method when studying the composition of the fluid-attending Franciscan and Sanbagawa metamorphism has come to the result that during metamorphism of lawsonite-glaucophane rocks the fluid phase did not contain more than 1–3 Mol-% of CO2.  相似文献   

3.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

4.
Laboratory experiments have been conducted with natural minerals to determine the relation of to epidote stability, and to determine stability curves for clinozoisite and epidote. Under oxidizing conditions Fe-epidote decomposes to grandite, anorthite, hematite, and quartz. Under more reducing conditions corundum becomes a stable product instead of quartz, and magnetite, and finally hercynite replace hematite. As conditions change from oxidizing to reducing the temperature of epidote breakdown decreases, epidote becomes more aluminous and the grandite produced increases in grossularite component and, to a lesser extent, in almandine.At 3000 bars under oxidizing conditions epidote is stable up to 694° C, epidote-corundum is stable to 692° C, clinozoisite is stable to 658° C, and clinozoisite-quartz is stable to 628° C. Approximate curves for the fractional decomposition of Al-Fe epidote have been determined as a function of Fe content under oxidizing conditions. Extrapolation of clinozoisite results to an Fe-free composition, and comparison with zoisite stability results suggest that at elevated pressures clinozoisite inverts with increasing temperature to zoisite along a nearly vertical phase boundary at 635±75° C.The stability relations provide an upper limit for epidote mineral stability mainly applicable to calcareous rocks. The epidote composition present in any given rock must be a function largely of bulk composition and . Zoisite replaces Al-clinozoisite in rocks of medium grade and high pressure.  相似文献   

5.
Contributions to Mineralogy and Petrology - Melting experiments were performed in the systems at P H 2 O =5 kbars. The compositions of the plagioclases coexisting with melt or with melt and quartz...  相似文献   

6.
Near-liquidus melting experiments were performed on a high-K latite at fO2's ranging from iron-wustite-graphite (IWG) to nickel-nickel oxide (NNO) in the presence of a C-O-H fluid phase. Clinopyroxene is a liquidus phase under all conditions. At IWG , the liquidus at 10 kb is about 1,150° C but is depressed to 1,025° C at NNO and . Phlogopite and apatite are near-liquidus phases, with apatite crystallizing first at pressures below 10 kb. Phlogopite is a liquidus phase only at NNO and high . Under all conditions the high-K latites show a large crystallization interval with phlogopite becoming the dominant crystalline phase with decreasing temperature. Increasing fO2 affects phlogopite crystallization but the liquidus temperature is essentially a function of . The chemical compositions of the near-liquidus phases support formation of the high-K latites under oxidizing conditions (NNO or higher) and high . It is concluded from the temperature of the H2O-saturated liquidus at 10 kb, the groundmass: crystal ratio and presence of chilled latite margins around some xenoliths that the Camp Creek high-K latite magma passed thru the lower crust at temperatures of 1,000° C or more.  相似文献   

7.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

8.
Clinochlore, which is, within the limits of error, the thermally most stable member of the Mg-chlorites, breaks down at = P tot to the assemblage enstatite+forsterite+spinel+H2O along a univariant curve located at 11 kb, 838 ° C; 15kb, 862 ° C; and 18 kb, 880 ° C (±1 kb ±10 ° C). At water pressures above that of an invariant point at 20.3 kb and 894 ° C involving the phases clinochlore, enstatite, forsterite, spinel, pyrope, and hydrous vapor, clinochlore disintegrates to pyrope+forsterite+spinel+H2O. The resulting univariant curve has a steep, negative dP/dT slope of –930 bar/ °C at least up to 35 kb.Thus, given the proper chemical environment, Mg-chlorites have the potential of appearing as stable phases within the earth's upper mantle to maximum depths between about 60 and 100 km depending on the prevailing undisturbed geotherm, and to still greater depths in subduction zones. However, unequivocal criteria for mantle derived Mg-chlorites are difficult to find in ultrabasic rocks.  相似文献   

9.
The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+–Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785–850 °C and 80–185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni–NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that \( ^{{{\text{Fe}}^{2 + } {-}{\text{Mg}}}} K_{\text{D}} \) between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+–Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.  相似文献   

10.
The oxygen fugacity ( ) of a C-O-H fluid in equilibrium with graphite has been determined in the range 10–30 kbar by equilibrating solid -buffer assemblages in graphite capsules containing C-O-H fluid. By using different buffers (FexO-Fe3O4, Ni-NiO, Co-CoO, Mo-MoO2), the of the graphite-saturated fluid is bracketed within a narrow range. This technique produces a calibration for the imposed on a sample contained within a graphite capsule. To achieve a thermodynamically-invariant system at fixed P and T, the was imposed on the system with an external buffer and the double-capsule technique. The experiments were performed in solid-media, high pressure apparatus with 19 mm tale-pyrex assemblies. A series of experiments at 10, 15, 20, 25, and 30 kbar, 800–1600° C, with imposed by the Fe2O3-Fe3O4-H2O equilibrium were conducted. The experimental results have been fitted to the following equation:
  相似文献   

11.
The feasibility of geological carbon storage (GCS) sites depends on their capacity to retain safely \({\hbox {CO}_{2}}\). While deep saline formations and depleted gas/oil reservoirs are good candidates to sequester \({\hbox {CO}_{2}}\), gas/oil reservoirs typically have a limited storage capacity compared to ideal targets (\(\sim \) 1 Mt/year) considered for \({\hbox {CO}_{2}}\) disposal (Celia et al. in Water Resour Res 51(9):6846–6892, 2015. doi: 10.1002/2015WR017609). In this respect, deep saline aquifers are considered more appropriate formations for GCS, but present the disadvantage of having limited characterization data. In particular, information about the continuity of the overlying sealing formations (caprock) is often sparse if it exists at all. In this work, a study of \({\hbox {CO}_{2}}\) leakage is conducted for a candidate GCS site located in the Michigan Basin, whose sealing properties of the caprock are practically unknown. Quantification of uncertainty on \({\hbox {CO}_{2}}\) leakage from the storage formation is achieved through a Monte Carlo simulation approach, relying on the use of a computationally efficient semi-analytical leakage model based upon the solution derived by Nordbotten et al. (Environ Sci Technol 43(3):743–749, 2009), which assumes leakage occurs across “passive” wells intersecting caprock layers. A categorical indicator Kriging simulator is developed and implemented to represent the caprock sealing properties and model the permeability uncertainty. Binary fields of caprock permeability are generated and exhibit mostly low permeability, with sparsely-occurring local high permeability areas where brine and \({\hbox {CO}_{2}}\) may leak out of the storage formation. In addition, the feasibility of extending the use of the semi-analytical model to large-area leakage pathways is studied. This work advances a methodology for preliminary uncertainty quantification of \({\hbox {CO}_{2}}\) leakage at sites of GCS with little or no information on the sealing properties of the caprock. The implemented analysis shows that, for the considered site, \({\hbox {CO}_{2}}\) leakage may not be negligible even for relatively low (\(\sim \) 1%) probabilities of finding permeable inclusions in the caprock and highlights the importance of being able to characterize caprock sealing properties over large areas.  相似文献   

12.
13.
The effects of small amounts of H2O (<4 wt % in the melt)on the multiply saturated partial melting of spinel lherzolitein the system CaO–MgO–Al2O3–SiO2 ±Na2O ± CO2 have been determined at 1·1 GPa inthe piston-cylinder apparatus. Electron microprobe analysisand Fourier transform infrared spectroscopy were used to analysethe experimental products. The effects of H2O are to decreasethe melting temperature by 45°C per wt % H2O in the melt,to increase the Al2O3 of the melts, decrease MgO and CaO, andleave SiO2 approximately constant, with melts changing fromolivine- to quartz-normative. The effects of CO2 are insignificantat zero H2O, but become noticeable as H2O increases, tendingto counteract the H2O. The interaction between H2O and CO2 causesthe solubility of CO2 at vapour saturation to increase withincreasing H2O, for small amounts of H2O. Neglect of the influenceof CO2 in some previous studies on the hydrous partial meltingof natural peridotite may explain apparent inconsistencies betweenthe results. The effect of small amounts of H2O on multiplysaturated melt compositions at 1·1 GPa is similar tothat of K2O, i.e. increasing H2O or K2O leads to quartz-normativecompositions, but increasing Na2O produces an almost oppositetrend, towards nepheline-normative compositions. KEY WORDS: H2O; CO2; FTIR; hydrous partial melting; mantle melting; spinel lherzolite; system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O  相似文献   

14.
The phenocryst assemblage of cummingtonite, orthopyroxene, quartz, titanomagnetite and ilmenite in rhyolites of New Zealand has been used to calculate P total and . The values of P total and depend strongly upon whether an ideal mixing, or an ordered, model is used for the solid-solutions, but in both cases P total.The rhyolite magma contained over 9 per cent water (by weight) when the cummingtonite phenocrysts precipitated, and possibly as much as 12 per cent, so that it is surprising that one of these rhyolites is a coherent lava. The calculated values of P total and are very sensitive to uncertainty in both the composition of the solid-solutions and temperature. Calculations show that >0.7–0.8 P total for cummingtonite to precipitate in rhyolites, and that iron-rich olivine and cummingtonite could only exist in rhyolites over a small temperature range at a pressure near 5 kilobars. Hornblende phenocrysts co-existing with fayalitic olivine in rhyolites accordingly have a very low activity of Mg7Si8O22(OH)2.  相似文献   

15.
MYSEN  BJORN 《Journal of Petrology》1992,33(2):347-375
The solubility mechanisms of H2O in peralkaline sodium aluminosilicatequenched melts (anhydrous NBO/T = 0.5) have been studied withRaman spectroscopy as a function of Al/(Al + Si) (0–0–3)and H2O content (0–7.5 wt.%). The coexisting structuralunits in the anhydrous quenched melts are TO2 (Q4), T2O5(Q3),and TO3 (Q2). In Al-free Na2Si4O9 (NS4) melt, H2O forms complexes with Na+(Na–OH bonds) and with Si4+ (Si–OH bonds). MolecularH2O is also detected. TO3 structural units are not detectedin this composition. In the H2O concentration range between0 and 4 wt.%, there is an approximately 20% increase in NBO/Tresulting from the increased abundance ratio, T2O5/TO2. Withfurther increments in water activity, the NBO/T of hydrous NS4melt is reduced. The depolymerization results from hydroxylationof the silica tetrahedra, whereas polymerization is due to formationof complexes with Na–OH bonding. In Al-bearing compositions on the Na2Si4O9–Na2(NaAl)4O9–join, there is evidence for Al–OH bonding in additionto Na–OH and Si–OH bonds. Among these complexes,the relative abundance of those with Si–OH bonds diminisheswith increasing Al/(A1 + Si), whereas complexes with Al–OHand Na–OH bonds become more important. Complexes withNa–OH bonds dominate for H2O4 wt.%, whereas complexeswith Al–OH dominate at higher water content. The threestructural units, TO3, T2O5, and TO2, were observed in bothanhydrous and hydrous peralkaline sodium aluminosilicate melts.Their abundance varies, however, with the H2O concentrationin the melts. The NBO/T decreases to a minimum (a 30–50%lowering of NBO/T relative to anhydrous materials) for low H2Ocontents (3–4 wt.% H2O), and increases as the H2O contentis increased further.  相似文献   

16.
Equilibria for several reactions in the system CaO-Al2O3-SiO2-CO2-H2O have been calculated from the reactions calcite+quartz=wollastonite+CO2 (5) and calcite+Al2SiO5+quartz=anorthite+CO2 (19) and other published experimental studies of equilibria in the systems Al2O3-SiO2-H2O and CaO-Al2O3-SiO2-H2O.The calculations indicate that the reactions laumontite+CO2=calcite+kaolinite+2 quartz+2H2O (1) and laumontite+calcite=prehnite+quartz+3H2O+CO2 (3) in the system CaO-Al2O3-SiO2-CO2-H2O, are in equilibrium with an H2O-CO2 fluid phase having -0.0075 for P fluid=P total=2000 bars.These calculations limit the stability of zeolite assemblages to low p CO2.Using the above reactions as model equilibria, several probelms of p CO2 in low grade metamorphism are discussed. (a) the problem of producing zeolitic minerals from metasedimentary assemblages of carbonate, clay mineral, quartz. (b) the significance of calcite (or aragonite) associated with zeolite (or lawsonite) in low grade metamorphism and hydrothermal alteration. (c) the reaction of zeolites (or lawsonite) with calcite (or aragonite) to produce dense Ca-Al-hydrosilicates (eg. prehnite, zoisite, grossular).  相似文献   

17.
The article describes the thermal metamorphism of siliceous carbonate rocks near the dolerite intrusive body in Eastern Siberia. The mineral associations at the immediate contact with dolerite are the following: wollastonite+rankinite, rankinite+spurrite (+melilite?), spurrite+melilite+merwinite+calcite and merwinite+monticellite+melilite+calcite. The melilite in these associations is usually unzoned; its composition being essentially gehlenitic. During the regressive stage of contact metamorphism new akermanite-rich melilite and calcite were formed by replacement of merwinite and earlier gehlenitic melilite through participation of CO2. The newly forming melilite grains have sharp compositional zoning. The origin of zoning was connected with the fall of temperature and decrease of the mole fraction of CO2 in the fluid equilibrated with the minerals.  相似文献   

18.
The system KAlO2–MgO–SiO2–H2O–CO2 has long been used as a model for the processes of granulite-facies metamorphism and the development of orthopyroxene-bearing mineral assemblages through the breakdown of biotite-bearing assemblages. There has been considerable controversy regarding the role of carbon dioxide in metamorphism and partial melting. We performed new experiments in this system (at pressures of 342 to 1500 MPa with T between 710 and 1045 °C and X Fl H2O between 0.05 and 1.00), accurately locating most of the dehydration and melting equilibria in P-T-X Fl H2O space. The most important primary result is that the univariant reaction Phl + Qtz + Fl = En + Sa + melt must be almost coincident with the fluid-absent reaction (Phl + Qtz = En + Sa + melt) in the CO2-free subsystem. In conjunction with the results of previous measurements of CO2 solubility in silicate melts and phase equilibrium experiments, our theoretical analysis and experiments suggest that CO2 cannot act as a flux for partial melting. Crustal melting in the presence of H2O–CO2 mixed fluids will always occur at temperatures higher than with pure H2O fluid present. Magmas produced by such melting will be granitic (s.l.) in composition, with relatively high SiO2 and low MgO contents, irrespective of the H2O–CO2 ratio in any coexisting fluid phase. We find no evidence that lamprophyric magmas could be generated by partial fusion of quartz-saturated crustal rocks. The granitic melts formed will not contain appreciable dissolved CO2. The channelled passage of hot CO2-rich fluids can cause local dehydration of the rocks through which they pass. In rock-dominated (as opposed to fluid-dominated) systems, minor partial melting can also occur in veins initially filled with CO2-rich fluid, as dehydration and local disequilibrium drive the fluid towards H2O-rich compositions. However, CO2 is unlikely to be a significant agent in promoting regional granulite-grade metamorphism, melting, magma generation, metasomatism or long-range silicate mass transfer in Earth's crust. The most viable model for the development of granulite-facies rocks involves the processes of fluid-absent partial melting and withdrawal of the melt phase to higher crustal levels. Received: 28 November 1996 / Accepted: 25 June 1997  相似文献   

19.
Thermal and chemical gradients at the boundary of a subducting plate and suprasubduction mantle lead to a variety of poorly understood geologic processes. This paper reports the results of experiments simulating interaction between olivine (Ol, mantle analog) and carbonated glaucophane schist (Gls, analog of the upper layer of the subducted crust) under the P-t conditions of a ‘hot’ subduction zone. The experiments were carried out at a pressure of P = 25 kbar under temperature gradient conditions (t min Gls = 720°C and t max Ol = 1000°C) and at a constant temperature of t = 800°C corresponding to the boundary between the materials in the gradient experiment. A comparison of experimental data obtained using two different methods showed that the temperature gradient experiment reproduced the character of schist-olivine interaction under isothermal conditions and provided additional information on the effect of temperature on mineral reactions. Orthopyroxene occurs in the experimental products in different textural positions, forming a layer (with or without magnesite) at the base of the olivine zone or separate grains and intergrowths with magnesite at the boundary of olivine grains. The development of orthopyroxene and carbonate redeposition are described by reactions between olivine and aqueous fluid components, SiO2 and CO2, at $a_{SiO_2 } = 0.23$ and $a_{CO_2 } = 0.07$ . The calculated silica content in the fluid under such thermodynamic conditions is 0.39 mol/kg H2O. Given these parameters, the estimated SiO2 flux at a depth of ~80 km from the downgoing slab of the Cascadia subduction zone in the northwester United States is 180 t/yr at a very moderate (for the considered depth level) aqueous fluid flux of one million moles per year per kilometer. Modern concepts on convective flows initiated by a subducting slab in the mantle wedge allow us to suggest that orthopyroxene-enriched ultramafic rocks must occur both above the areas of the release of volatile components and silica from the slab and at deeper levels of subduction zones.  相似文献   

20.
To model magmatic crystallization processes for mafic to intermediatecompositions at high pressure, liquidus phase relations in theforsterite–anorthite–diopside–silica (FADS)tetrahedron within the CaO–MgO–Al2O3–SiO2system have been determined at 2·0 GPa. Compositionsof five liquidus invariant points have been determined and theapproximate compositions of five others have been inferred.These involve primary phase volumes for forsterite (fo), enstatite(en), diopside (di), high quartz (qz), spinel (sp), sapphirine(sa), garnet (gt), anorthite (an), and corundum (cor). The determined(with wt % coefficients) and inferred reactions (without coefficients)that define each isobaric invariant point are as follows: 23 en + 68 di + 9 sp = 84 liq + 16 fo 37 di + 63 sa = 47 liq + 40 sp + 13 en 100 gt = 21 liq + 27 sa + 55 en + 18 di 1 di + 59 en + 41 an = 43 liq + 57 gt 18 di + 21 qz + 15 en + 47 an = 100 liq di + an + gt = liq + sa an + gt = liq + sa + en sa + an + di = liq + sp sa + an = liq + cor + sp di + cor = liq + an + sp. These phase relations provide a diverse range of constraintson igneous processes at pressures near 2 GPa. They show thatfractional crystallization of a model basalt gives a residualliquid strongly enriched in SiO2, strongly depleted in MgO,and mildly enriched in Al2O3. Such a trend is consistent withthe calc-alkaline fractionation trend observed at subductionzones, but is in disagreement with suggestions that fractionationof tholeiitic basalt in this pressure range yields an alkalicbasalt. Both trends may occur for natural basalts dependingon the Na2O content of the parental magma. Also, the data showthat the minimum pressure for the formation of cumulate eclogitesand garnet pyroxenites is about 1·8–1·9GPa. The lower limit of pressure at which sapphirine can crystallizefrom a liquid in the FADS tetrahedron is estimated to be 1·1–1·5GPa and the upper limit is >3 GPa. Sapphirine crystallizesfrom magmas intermediate in composition between basalt and andesite.Probable igneous sapphirine in mafic associations is rare, butit occurs as part of a pyroxenite xenolith from Delegate, Australia,that we suggest is a cumulate assemblage and in a sapphirinenorite at Wilson Lake, Labrador, Canada. KEY WORDS: basalt; eclogite; sapphirine; fractional crystallization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号