首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the MHD simulation including accretion flows in disks, acceleration of outflows from disks, and collimation of the outflows self-consistently. Although it was considered that this kind of simulations only shows the transient phenomena of jets, we found that the outflow and accretion flow reached a quasi-steady state by performing a long-term calculation in a large calculation region. Though the final stage is not exactly the steady state, the acceleration and collimation mechanisms of the outflow were the same as those of the steady theory. The scale of the calculation is approaching to the scale that was observed by the VLBI technique, which provides the current highest resolution for YSO jets.  相似文献   

2.
In this paper we review the possibilities for magnetohydrodynamic processes to handle the angular momentum transport in accretion disks. Traditionally the angular momentum transport has been considered to be the result of turbulent viscosity in the disk, although the Keplerian flow in accretion disks is linearly stable towards hydrodynamic perturbations. It is on the other hand linearly unstable to some magnetohydrodynamic (MHD) instabilities. The most important instabilities are the Parker and Balbus-Hawley instabilities that are related to the magnetic buoyancy and the shear flow, respectively. We discuss these instabilities not only in the traditional MHD framework, but also in the context of slender flux tubes, that reduce the complexity of the problem while keeping most of the stability properties of the complete problem. In the non-linear regime the instabilities produce turbulence. Recent numerical simulations describe the generation of magnetic fields by a dynamo in the resulting turbulent flow. Eventually such a dynamo may generate a global magnetic field in the disk. The relation of the MHD-turbulence to observations of accretion disks is still obscure. It is commonly believed that magnetic fields can be highly efficient in transporting the angular momentum, but emission lines, short-time scale variability and non-thermal radiation, which a stellar astronomer would take as signs of magnetic variability, are more commonly observed during periods of low accretion rates. Received October 12, 1995 / Accepted November 16, 1995  相似文献   

3.
Accretion disks orbiting black holes power high-energy systems such as X-ray binaries and Active Galactic Nuclei. Observations are providing increasingly detailed quantitative information about such systems. This data has been interpreted using standard toy-models that rely on simplifying assumptions such as regular flow geometry and a parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions and, in principle, lead to a genuinely predictive theory. In recent years we have developed a fully three-dimensional general relativistic magnetohydrodynamic simulation code that evolves time-dependent inflows into Kerr black holes. Although the resulting global simulations of black hole accretion are still somewhat simplified, they have brought to light a number of interesting results. These include the formation of electro-magnetically dominated jets powered by the black hole’s rotation, and the presence of strong stresses in the plunging region of the accretion flow. The observational consequences of these features are gradually being examined. Increasing computer power and increasingly sophisticated algorithms promise a bright future for the computational approach to black hole accretion.  相似文献   

4.
A thick accretion disk which is isentropic cannot have simple laminar flow because fluid elements follow orbits which intersect the orbits of other fluid elements, leading to turbulence in astrophysical disks which have very large Reynolds numbers. The turbulence in such disks is estimated using molecular analogies for the behavior of the fluid elements. The usual empirical dissipation parameter ‘α’ is found to be equal to 0.25 under normal circumstances. Characteristic local disk parameters are calculated for a variety of conditions at different distances from a central star of one solar mass. Circumstances involving low midplane optical depths or external heating which can lead to large reductions in the turbulence are discussed.  相似文献   

5.
The magnetic field in an accretion disk is estimated assuming that all of the angular momentum within prescribed accretion disk radii is removed by a jet. The magnetic field estimated at the base of the jet is extrapolated to the blazar emission region using a model for a relativistic axisymmetric jet combined with some simplifying assumptions based on the relativistic nature of the flow. The extrapolated magnetic field is compared with estimates based upon the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN 421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-Compton models are inconsistent with the magnetic fields extrapolated in this way. However, in two cases inverse Compton models in which a substantial part of the soft photon field is generated locally agree well, mainly because these models imply magnetic field strengths consistent with an important Poynting Flux component. This comparison is based on estimating the mass accretion rate from the jet energy flux. Further comparisons along these lines will be facilitated by independent estimates of the mass accretion rate in blazars and by more detailed models for jet propagation near the black hole.  相似文献   

6.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

7.
It is shown that particle interactions in the black-hole accretion disks result in the production of excess positrons over electrons. This asymmetry dose not invoke CP violation and apparently contradicts recent observed ratio for the electron-positron component of cosmic rays.  相似文献   

8.
The two-dimensional structure of a thin accretion disk in the vicinity of a Schwarzschild black hole after passing a marginally stable orbit (r< 3r g is discussed in terms of the Grad-Shafranov hydrodynamic equation. The accretion disk is shown to be sharply compressed as the sonic surface is approached, so the mass flow here is no longer radial. As a result, the dynamic forces ρ[(v ?)v] θ , which are equal in magnitude to the pressure gradient ? θ P on the sonic surface, become significant in vertical balance. Therefore, the disk thickness in the supersonic region (and, in particular, near the black-hole horizon) may be assumed to be determined not by the pressure gradient but by the shape of ballistic trajectories.  相似文献   

9.
We describe the results of a sequence of simulations of gravitational collapse in a turbulent magnetized region. The parameters are chosen to be representative of molecular cloud material. We find that several protostellar cores and filamentary structures of higher than average density form. The filaments inter connect the high-density cores. Furthermore, the magnetic field strengths are found to correlate positively with the density, in agreement with recent observations. We make synthetic channel maps of the simulations, and show that material accreting on to the cores is channelled along the magnetized filamentary structures. This is compared with recent observations of S106, and shown to be consistent with these data. We postulate that this mechanism of accretion along filaments may provide a means for molecular cloud cores to grow to the point where they become gravitationally unstable and collapse to form stars.  相似文献   

10.
A computation simulation of the motion of equilibrium particles in semi-detached binary systems is presented. We find that an accretion disk can be formed around the primary due to viscosity between moving particles. The calculated results are obtained for various factors and mass ratios. The results show that a part of the martter transferred from the secondary is accreted by the primary and the equilibrium mass transfer of moving particle depends on viscous factors and mass ratios.A part of the work has been performed during author's visit the Institute for Advanced Study, Princeton, N.J.  相似文献   

11.
This paper investigates the tidal effect on accretion disk in CVs and sets up a simplified model in which the secondary's gravitation is substituted by a mean tidal torque. We find that a linear tidal torque will not be able to maintain an equilibrium disk. By using the result of the radius of the equilibrium disk approximately equals to the tidal radius, which was obtained by using the two dimensional numerical simulation invoking nonlinear tidal effect, we give the modified tidal dissipation function for our simplified model which could be used to interpret the outburst of the dwarf nova with tidal effect. The paper also shows that the radius of an equilibrium disk with a torus is slightly small than the Lubow-Shu radius, and the tidal effect may also cause the cycle of quiescence-superoutburst in addition to the cycle of quiescence-outbursts-superoutburst.  相似文献   

12.
The problem of steady-state accretion to nonrotating black holes is examined. Advection is included and generalized formulas for the radiation pressure in both the optically thick and thin cases are used. Special attention is devoted to models with a high accretion rate. Global solutions for accretion disks are studied which describe a continuous transition between an optically thick outer region and an optically thin inner region. It is shown that there is a maximum disk temperature for the model with a viscosity parameter α = 0.5. For the model with α = 0.1, no optically thin regions are found to exist for any accretion rate.  相似文献   

13.
Linear analysis shows that radial oscillations in accretion disks around compact object are overstable to axisymmetric perturbation under a variety of conditions. Furthermore, numerical simulations confirm that the radial oscillations induce quasi-periodic modulations of the disk luminosity. The disk oscillation model may be responsible for quasi-periodic oscillations (QPOs) observed in low mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and other compact objects.  相似文献   

14.
15.
In this paper, we consider a close binary system consisting of a compact star and a optical Main-Sequence star which fills its critical Roche lobe and transfers matter through the inner Lagrangian pointL 1 toward the compact object.We use the Hill's problem as the dynamical model of the binaries. The following binaries are calculated by Duncanet al.'s mapping approximation: RY Per, RZ Sct, RS Vul, and Tau. Figures 3–6 show that the trajectories of accretion disk particles in the binaries. The relation between the dimensionless semi-major axis and times of conjunctionN are presented in Figures 7–10.This work was supported by National Natural Science Foundation of China.  相似文献   

16.
We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty “dead” zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-in field in this region. Magnetic field is quasi-azimuthal close to the outer boundary of accretion disks for standard ionization rates and dust grain size a d=0.1 μm. In the case of large dust grains (a d>0.1 μm) or enhanced ionization rates, the magnetic field is quasi-radial in the outer regions. It is shown that the inner boundary of dusty “dead” zone is placed at r=(0.1–0.6) AU for accretion disks of stars with M=(0.5–2)?M . Outer boundary of “dead” zone is placed at r=(3–21) AU and it is determined by magnetic ambipolar diffusion. Mass of solid material in the “dead” zone is more than 3?M for stars with M≥1?M .  相似文献   

17.
The structure and stability of a magnetized accretion disk are numerically examined with anomalous viscosity. The temperature, surface density and radial velocity all decrease with increasing radius r. The results show that the existence of the magnetic field B has an impact on the structure of the disk, which directly results in the variation of the growth rate and the damping rate of the unstable and stable modes. For Inward-moving mode, the magnetic field greatly enhances the instability at short wavelength and acts as a factor of stability at long wavelength. The growth rate of outward-moving unstable mode decreases, while the damping rate of thermally stable mode increases significantly owing to the magnetic field.  相似文献   

18.
The properties of gas-dust disks that surrounded Jupiter and Saturn during the final stage of their formation are analyzed. The sizes of the disks are determined by the total planetocentric angular momentum of the matter accreted by planets and correspond to the sizes of the orbits of their largest satellites. The mass of the solid component of disks is limited from below by the total mass of the Galilean satellites of Jupiter (no less than 4 × 1026 g) and the mass of the largest Saturnian satellites (1.4 × 1026 g), whereas the mass of the gaseous component is limited from above by the amount of hydrogen and helium that could have been later lost by the disks. Our analysis of the known mechanisms of dissipation of gas showed that its simultaneous content in the disks relative to the solid component was much lower than the corresponding gas-to-solid ratio in the Sun. A certain amount of solid compounds (including ice) could have been brought into the disks with planetesimals, which had undergone mutual collisions in the neighborhood of giant planets and served as germs of satellites. The bulk of solid matter appears to have been captured into disks when the latter were crossed by smaller and intermediate-sized planetesimals, which then became parts of the satellites.  相似文献   

19.
Magnetic tensions are likely to be the dominant shear force in accretion disks, larger when integrated than turbulent viscosity by an order of magnitude or more. In galactic disks, they guarantee the mass-accretion rate required by the quasar phenomenon. In fast-revolving, clumpy disks, magnetic pressures can exceed static pressures and be amplified towards ram pressures. The inner, near-rigidly rotating parts of galactic disks are suggestive candidates. The gas velocities in such magnetically controlled disks mimic higher central masses than present.  相似文献   

20.
The results of a non-LTE analysis of a number of spectral lines formed in the accreting envelopes of UX Ori stars are given. The accretion rate is estimated from an analysis of the first three lines of the Balmer series: M a = 10?8 ?10?9 M The gas temperature in this region is about 10,000 K. In the immediate vicinity of the star there is a hotter region, with T > 15,000 K, in which the 5876 Å line of neutral helium, observed in the spectra of these stars, is formed. The region of formation of this line has a small geometrical thickness, covers a small fraction of the star’s visible disk, and evidently consists of the site of contact of the accreting gas with the stellar surface. The low gas rotation rates in this region (150–200 km/sec) may mean that rapid rotation of the accreting gas is damped by the star’s magnetic field, which is strong enough to affect the gas stream. We estimate the magnetic field strength in this region to be about 150 G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号