首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Archean spherule layers represent the only currently known remnants of the early impact record on Earth. Based on the lunar cratering record, the small number of spherule layers identified so far contrasts to the high impact flux that can be expected for the Earth at that time. The recent discovery of several Paleoarchean spherule layers in the BARB5 and CT3 drill cores from the Barberton area, South Africa, drastically increases the number of known Archean impact spherule layers and may provide a unique opportunity to improve our knowledge of the impact record on the early Earth. This study is focused on the spherule layers in the CT3 drill core from the northeastern Barberton Greenstone Belt. We present highly siderophile element (HSE: Re, Os, Ir, Pt, Ru, and Pd) concentrations and Re‐Os isotope signatures for spherule layer samples and their host rocks in order to unravel the potential presence of extraterrestrial fingerprints within them. Most spherule layer samples exhibit extreme enrichments in HSE concentrations of up to superchondritic abundances in conjunction with, in some cases, subchondritic present‐day 187Os/188Os isotope ratios. This indicates a significant meteoritic contribution to the spherule layers. In contrast to some of the data reported earlier for other Archean spherule layers from the Barberton area, the CT3 core is significantly overprinted by secondary events. However, HSE and Re‐Os isotope signatures presented in this study indicate chondritic admixtures of up to (and even above) 100% chondrite component in some of the analyzed spherule layers. There is no significant correlation between HSE abundances and respective spherule contents. Although strongly supporting the impact origin of these layers and the presence of significant meteoritic admixtures, peak HSE concentrations are difficult to explain without postdepositional enrichment processes.  相似文献   

2.
The oldest known large bolide impacts onto Earth are represented by approximately 3.47–3.2 Ga old Archean spherule layers of the Barberton Greenstone Belt (BGB) in South Africa and the Pilbara craton in West Australia. These layers were recognized as impact deposits by their excessively high platinum group element (PGE) contents that are indicative of an extraterrestrial component. This was followed by measurements of extraterrestrial Cr isotopic ratios, in some cases. Recently, the extraterrestrial PGE signature in Archean spherule layers from the BGB was localized and positively associated with the presence of submicrometer PGE alloy micronuggets associated with Ni,Cr-rich spinel. The actual formation of these platinum group mineral (PGM) phases has, however, not yet been resolved. Primary meteoritic particles from the impacting body, the products of impact melting, or condensation from impact vapor plumes have all been proposed as possible genetic process. Resolving this requires detailed microanalytical investigation of the internal microchemical and microstructural compositions, textural characteristics, and crystallographic relationships between the different phases. Here, we report the results of a first transmission electron microscopy (TEM) study of six such PGE microparticles enclosed in Ni-Cr spinel or occurring in groundmass of Barberton spherule layers from the BARB5 ICDP drill core and from the CT3 exploration core. Results include a variety of chemical and structural PGM compositions that are difficult to explain by a single process, leading to the conclusion that several processes may have been involved in the formation of PGMs in Archean spherule layers from the BGB. There is evidence supporting formation of these PGMs by exsolution from the spinel host phase, precipitation from a melt phase, and condensation from a gas phase (of the impact vapor plume).  相似文献   

3.
A Paleoarchean impact spherule‐bearing interval of the 763 m long International Continental Scientific Drilling Program (ICDP) drill core BARB5 from the lower Mapepe Formation of the Fig Tree Group, Barberton Mountain Land (South Africa) was investigated using nondestructive analytical techniques. The results of visual observation, infrared (IR) spectroscopic imaging, and micro‐X‐ray fluorescence (μXRF) of drill cores are presented. Petrographic and sedimentary features, as well as major and trace element compositions of lithologies from the micrometer to kilometer‐scale, assisted in the localization and characterization of eight spherule‐bearing intervals between 512.6 and 510.5 m depth. The spherule layers occur in a strongly deformed section between 517 and 503 m, and the rocks in the core above and below are clearly less disturbed. The μXRF element maps show that spherule layers have similar petrographic and geochemical characteristics but differences in (1) sorting of two types of spherules and (2) occurrence of primary minerals (Ni‐Cr spinel and zircon). We favor a single impact scenario followed by postimpact reworking, and subsequent alteration. The spherule layers are Al2O3‐rich and can be distinguished from the Al2O3‐poor marine sediments by distinct Al‐OH absorption features in the short wave infrared (SWIR) region of the electromagnetic spectrum. Infrared images can cover tens to hundreds of square meters of lithologies and, thus, may be used to search for Al‐OH‐rich spherule layers in Al2O3‐poor sediments, such as Eoarchean metasediments, where the textural characteristics of the spherule layers are obscured by metamorphism.  相似文献   

4.
Samples from a single outcrop of the Graenseso spherule layer, Midternaes, South Greenland, consist of a spherule‐bearing dolomixtite with matrix‐supported intraclasts up to 1 m in size. In addition to field observations, we performed mineralogical and whole rock geochemical analysis, including electron microprobe, neutron activation analysis, X‐ray fluorescence, and mass spectrometry of the horizon and the overlying and underlying strata. We show that the spherules are petrographically similar to those in the Zaonega spherule layer, Karelia, Russia. Our petrographic and chemical results are consistent with the previous suggestion that the Grænsesø layer correlates with the Zaonega layer, and it is possible that both layers are related to the Vredefort impact event. The samples containing spherules, as well as the overlying rocks, have elevated REEs compared to the underlying pre‐impact layer, suggestive of a new continental source of sediment that may be coincident with the impact event. Zircons separated from the lower part of the Grænsesø spherule layer display complex age patterns suggesting that they have genetically different origins based on distinctly different Th/U ratios. Crystallization ages of all groups are ≥ 2.8 Ga, with ~2.8 Ga representing a time of major crustal growth globally. Therefore, we cannot conclusively determine in this study if the zircons are locally derived or if they are transported with the ejecta. The spherule layer was deposited by a high‐energy, subaqueous debris flow, an origin that is consistent with the hypothesis that the layer was deposited by impact‐induced waves and/or currents.  相似文献   

5.
Cover          下载免费PDF全文
Cover: Crossed‐polarized light image of an impact spherule (in the CT3 drill core) from the Barberton Greenstone Belt. Seda Ozdemir et al. discuss the details in their article on p. 2586. Image courtesy of S. Ozdemir.  相似文献   

6.
Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within‐crater and out‐of‐crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate‐impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment‐clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic‐granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum‐group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near‐chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1–0.2% chondrite‐equivalent.  相似文献   

7.
Abstract– We report bulk and olivine compositions in 66 stony cosmic spherules (Na2O < 0.76 wt%), 200–800 μm in size, from the Transantarctic Mountains, Antarctica. In porphyritic cosmic spherules, relict olivines that survived atmospheric entry heating are always Ni‐poor and similar in composition to the olivines in carbonaceous or unequilibrated ordinary chondrites (18 spherules), and equilibrated ordinary chondrites (one spherule). This is consistent with selective survival of high temperature, Mg‐rich olivines during atmospheric entry. Olivines that crystallized from the melts produced during atmospheric entry have NiO contents that increase with increasing NiO in the bulk spherule, and that range from values similar to those observed in chondritic olivines (NiO generally <0.5 wt%) to values characteristic of olivines in meteoritic ablation spheres (NiO > 2 wt%). Thus, NiO content in olivine cannot be used alone to distinguish meteoritic ablation spheres from cosmic spherules, and the volatile element contents have to be considered. We propose that the variation in NiO contents in cosmic spherules and their olivines is the result of variable content of Fe, Ni metal in the precursor. NiO contents in olivines and in cosmic spherules can thus be used to discuss their parent body. Ni‐poor spherules can be derived from C‐rich and/or metal‐poor precursors, either related to CM, CI, CR chondrites or to chondritic fragments dominated by silicates, regardless of the parent body. Ni‐rich spherules (NiO > 0.7 wt%) that represent 55% of the 47 barred‐olivine spherules we studied, were derived from the melting of C‐poor, metal‐rich precursors, compatible with ordinary chondrite or CO, CV, CK carbonaceous chondrite parentages.  相似文献   

8.
Abstract— Rock magnetic properties across several K‐T boundary sections have been investigated to reveal any possible magnetic signature associated with the remains of the impact event at the end of the Cretaceous. Studied sections' locations vary in distance to the Chicxulub structure from distal (Agost and Caravaca, Spain), through closer (ODP Hole 1049A, Blake Nose, North Atlantic), to proximal (El Mimbral and La Lajilla, Mexico). A clear magnetic signature is associated with the fireball layer in the most distal sections, consisting of a sharp increase in susceptibility and saturation isothermal remanent magnetization (SIRM), and a decrease in remanence coercivity. Magnetic properties in these sections point to a distinctive ferrimagnetic phase, probably corresponding to the reported Mg‐ and Ni‐rich, highly oxidized spinels of meteoritic origin. At closer and proximal sections magnetic properties are different. Although there is an increase in susceptibility and SIRM associated with a rusty layer placed on top of the siliciclastic deposit in proximal sections, and with a similar limonitic layer on top of the spherule bed that defines the boundary at Blake Nose, the magnetic properties indicate a mixture of iron oxyhydroxides dominated by fine‐grained goethite. Based on previous geochemical studies at Blake Nose and new geochemical and PGE abundance measurements performed in this work at El Mimbral, this goethite‐rich layer can be interpreted as an effect of diagenetic remobilization and precipitation of Fe. There is not enough evidence to assert that this Fe concentration layer at proximal sections is directly related to deposition of fine meteoritic material. Magnetic, geochemical, and iridium data reject it as a primary meteoritic phase.  相似文献   

9.
Cover          下载免费PDF全文
Cover: High-contrast backscattered electron image of a roundish cluster of Ni-Cr spinel grains from an Archean spherule layer at 511.41 m depth in the BARB5 drill core (central Barberton Mountain Land, South Africa) with idiomorphic to dendritic crystal shapes. This cluster occurs in groundmass of the layer between actual impact spherules. (Length of the scale bar: 100 micrometers). For details, see the paper by Tanja Mohr-Westheide et al. on p. 1516.  相似文献   

10.
Fossil iron meteorites are extremely rare in the geological sedimentary record. The paleometeorite described here is the first such finding at the Cretaceous‐Paleogene (K‐Pg) boundary. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the bottom part of the host layer. The fragments of meteorite (2–6 mm in size) and meteoritic dust are metallic‐gray in color and have a total weight of 1.8181 g. Geochemical and petrographic analyses of the meteorite from Lechówka reveal the presence of Ni‐rich minerals with a total Ni amount of 2–3 wt%. The identified minerals are taenite, kamacite, schreibersite, Ni‐rich magnetite, and Ni‐rich goethite. No relicts of silicates or chromites were found. The investigated paleometeorite apparently represents an independent fall and does not seem to be derived from the K‐Pg impactor. The high degree of weathering did not permit the chemical classification of the meteorite fragments. However, the recognized mineral inventory, lack of silicates, and their pseudomorphs and texture may indicate that the meteorite remains were an iron meteorite.  相似文献   

11.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

12.
Abstract— We present major and trace element data as well as petrographic observations for impactites (suevitic groundmass, bulk suevite, and melt rock particles) and target lithologies, including Cretaceous anhydrite, dolomite, argillaceous limestone, and oil shale, from the Yaxcopoil‐1 borehole, Chixculub impact structure. The suevitic groundmass and bulk suevite have similar compositions, largely representing mixtures of carbonate and silicate components. The latter are dominated by melt rock particles. Trace element data indicate that dolomitic rocks represented a significant target component that became incorporated into the suevites; in contrast, major elements indicate a strong calcitic component in the impactites. The siliceous end‐member requires a mafic component in order to explain the low SiO2 content. Multicomponent mixing of various target rocks, the high alteration state, and dilution by carbonate complicate the determination of primary melt particle compositions. However, two overlapping compositional groups can be discerned—a high‐Ba, low‐Ta group and a high‐Fe, high‐Zn, and high‐Hf group. Cretaceous dolomitic rocks, argillaceous limestone, and shale are typically enriched in U, As, Br, and Sb, whereas anhydrite contains high Sr contents. The oil shale samples have abundances that are similar to the North American Shale Composite (NASC), but with a comparatively high U content. Clastic sedimentary rocks are characterized by relatively high Th, Hf, Zr, As, and Sb abundances. Petrographic observations indicate that the Cretaceous rocks in the Yaxcopoil‐1 drill core likely register a multistage deformation history that spans the period from pre‐ to post‐impact. Contrary to previous studies that claimed evidence for the presence of impact melt breccia injection veins, we have found no evidence in our samples from a depth of 1347–1348 m for the presence of melt breccia. We favor that clastic veinlets occur in a sheared and altered zone that underwent intense diagenetic overprint prior to the impact event.  相似文献   

13.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

14.
Abstract— The osmium isotope ratios and platinum‐group element (PGE) concentrations of impact‐melt rocks in the Chesapeake Bay impact structure were determined. The impact‐melt rocks come from the cored part of a lower‐crater section of suevitic crystalline‐clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact‐melt rocks range from 0.151 to 0.518. The rhenium and platinum‐group element (PGE) concentrations of these rocks are 30–270x higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact‐melt rocks. Because the PGE abundances in the impact‐melt rocks are dominated by the target materials, interelemental ratios of the impact‐melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact‐melt rocks include a bulk meteoritic component of 0.01–0.1% by mass. Several impact‐melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%–0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01–0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact‐melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact‐melt rocks, and 2) variable fractionations of PGE during syn‐ to post‐impact events.  相似文献   

15.
Abstract— As the solar system formed, it inherited and perpetuated a rich organic chemistry, the molecular products of which are preserved in ancient extraterrestrial objects such as carbonaceous chondrites. These organic‐rich meteorites provide a valuable and tangible record of the chemical steps taken towards the origin of life in the early solar system. Chondritic organic matter is present in the inorganic meteorite matrix which, in the CM and CI chondrites, contains evidence of alteration by liquid water on the parent asteroid. An unanswered and fundamental question is to what extent did the organic matter and inorganic products of aqueous alteration interact or display interdependence? We have used an organic labelling technique to reveal that the meteoritic organic matter is strongly associated with clay minerals. This association suggests that clay minerals may have had an important trapping and possibly catalytic role in chemical evolution in the early solar system prior to the origin of life on the early Earth.  相似文献   

16.
Abstract— The large, complex Woodleigh structure in the Carnarvon basin of Western Australia has recently been added to the terrestrial impact crater record. Many aspects of this structure are, however, still uncertain. This work provides a detailed petrographic assessment of a suite of representative drill core samples from the borehole Woodleigh 1 that penetrated uplifted basement rocks of the central part of this structure. Fundamental rock and mineral deformation data and high‐precision chemical data, including results of PGE and oxygen isotopic analysis, are presented. The sampled interval displays likely impact‐produced macrodeformation in the form of fracturing and breccia veining at the microscopic scale. Contrary to earlier reports that these breccias represent pseudotachylite (friction melt) or even shock/shear‐produced pseudotachylitic melt breccia cannot be confirmed due to pervasive post‐impact alteration. Abundant planar deformation features (PDFs) in quartz, in addition to diaplectic glass and partial isotropization, are the main shock deformation effects observed, confirming that Woodleigh is of impact origin. Over the investigated depth interval, the statistics of quartz grains with a variable number of sets of PDFs does not change significantly, and the patterns of crystallographic orientations of PDFs in randomly selected quartz grains does not indicate a change in absolute shock pressure with depth either. The value of oxygen isotopes for the recognition of meteoritic contamination, as proposed by earlier Woodleigh workers, is critically assessed. Neither INA nor PGE analyses of our samples support the presence of a meteoritic component within this basement section, as had been claimed in earlier work.  相似文献   

17.
We have investigated six impact glass spherules from the K‐Pg event bed at Beloc, Haiti, using optical and electron microscopy, electron microprobe and in situ laser ablation–mass spectrometry (LA‐ICP‐MS; 37 trace elements, spot size 90–35 μm), in order to understand geochemical changes during alteration. The mm‐sized glass spherules are partly or totally altered to smectite, but original textural features are preserved. The average trace‐element composition of glass matches that one of the upper continental crust. Hints for a “meteoritic component” are lacking (Ni/Cr < 1.3; Pt below detection limit). Compared to this fresh glass, smectites are strongly depleted in trace elements, except for Li, Sc, V, Ni, Ga, Ge, and Ba. The chondrite‐normalized REE distribution patterns are flat with subchondritic abundances, related to their very low degree of crystallinity. We observe a positive Eu and a strong negative Ce anomaly; the latter is explained by formation of an organic Ce4+‐complex, soluble under reducing conditions. Zr/Hf of glasses and smectites is chondritic to superchondritic (35–40), whereas Nb/Ta in smectite is subchondritic (5–12) compared to Nb/Ta in the glass (~14–18). The low Nb/Ta is due to the low Nb concentrations in the smectite. Using in situ techniques with high spatial resolution, we have documented for the first time the significant changes in diagnostic elemental ratios during alteration of glass spherules. This has to be taken into account in the interpretation of geochemical data of not only impact materials but also volcanic glass, especially if bulk rock methods are used.  相似文献   

18.
Abstract— A meteoritic origin was proposed for the New Quebec Crater in 1949 on the basis of an aerial photograph showing its unique circularity and raised rim amid Precambrian gneisses of the Canadian Shield. At that time, only those few craters associated with meteorites were generally accepted as of impact origin. When the earliest field expeditions failed to find meteorites or impact products, two leading meteoriticists, Frederick C. Leonard and Lincoln LaPaz, cited the “Chubb” Crater as a flagrant example for which claims of meteoritic origin were advanced without valid proof. They also listed the Lake Bosumtwi Crater in Ashanti (now Ghana) among crater-like features, clearly of non-meteoritic origin, misidentified as meteorite craters. Controversy over the origin these two craters continued for decades. In Part I of this paper, we trace the investigations that led to the current acceptance of New Quebec as an authentic impact crater. We note that, for reasons that are not entirely clear, a meteoritic origin for the New Quebec Crater achieved wider acceptance at an earlier date than for the Lake Bosumtwi Crater, where petrographic and chemical evidence is more abundant and compelling. In Part II, we describe the petrography of two impact melt samples from the New Quebec Crater and present new evidence on the degrees of shock metamorphism affecting the accessory minerals: apatite, sphene, magnetite and zircon. Zircon, in particular, shows a range from euhedral grains with no signs of alteration to those decomposed to baddeleyite plus silica.  相似文献   

19.
Abstract– We examined 378 micrometeorites collected from deep‐sea sediments of the Indian Ocean of which 175, 180, and 23 are I‐type, S‐type, and G‐type, respectively. Of the 175 I‐type spherules, 13 contained platinum group element nuggets (PGNs). The nuggets occur in two distinct sizes and have distinctly different elemental compositions: micrometer (μm)‐sized nuggets that are >3 μm contain dominantly Ir, Os, and Ru (iridium‐platinum group element or IPGE) and sub‐μm (or nanometer)‐sized (<1 μm) nuggets, which contain dominantly Pt, Rh, and Pd (palladium—PGE or PPGE). The μm‐sized nuggets are found only one per spherule in the cross section observed and are usually found at the edge of the spherule. By contrast, there are hundreds of nanometer‐sized nuggets distributed dominantly in the magnetite phases of the spherules, and rarely in the wüstite phases. Both the nugget types are found as separate entities in the same spherule and apparently, nugget formation is a common phenomenon among I‐type micrometeorites. However, the μm‐sized nuggets are seen in fewer specimens (~2.5% of the observed I‐type spherules). In all, we analyzed four nuggets of μm size and 213 nanometer‐sized nuggets from 13 I‐type spherules for platinum group elements. Chemically, the μm‐sized PGNs contain chondritic ratios of Os/Ir, but are depleted in the more volatile PGE (Pt, Rh, and Pd) relative to chondritic ratios. On the other hand, the nanometer‐sized nuggets contain dominantly Pt and Rh. Importantly, the refractory PGEs are conspicuous by their absence in these nanometer nuggets. Palladium, the most volatile PGE is highly depleted (<1.1%) with respect to chondritic ratios in the μm‐sized PGNs, and is observed in only 17 of 213 nanometer nuggets with concentrations that are just above the detection limit (≥0.2%). Distinct fractionation of the PGE into IPGE (Ir, Os, Ru) and PPGE seems to take place during the short span of atmospheric entry. These observations suggest several implications: (1) The observation of fractionated PGE in an Fe‐Ni system gives rise to the possibility that Earth’s core could contain fractionated PGE. (2) The present data support the processes suggested for the fractionated PGE patterns observed in the ejecta of ancient meteorite impacts. (3) Meteoric metals released in the troposphere could contain fractionated PGNs in large numbers.  相似文献   

20.
Abstract— Libyan Desert Glass (LDG) is an enigmatic type of glass that occurs in western Egypt in the Libyan Desert. Fairly convincing evidence exists to show that it formed by impact, although the source crater is currently unknown. Some rare samples present dark‐colored streaks with variable amounts of Fe, and they are supposed to contain a meteoritic component. We have studied the iron local environment in an LDG sample by means of Fe K‐edge highresolution X‐ray absorption near edge structure (XANES) spectroscopy to obtain quantitative data on the Fe oxidation state and coordination number in both the Fe‐poor matrix and Fe‐rich layers. The pre‐edge peak of the high‐resolution XANES spectra of the sample studied displays small but reproducible variations between Fe‐poor matrix and Fe‐rich layers, which is indicative of significant changes in the Fe oxidation state and coordination number. Comparison with previously obtained data for a very low‐Fe sample shows that, while iron is virtually all trivalent and in tetrahedral coordination ([4]Fe3+) in the low‐Fe sample, the sample containing the Fe‐rich layers display a mixture of tetra‐coordinated trivalent iron ([4]Fe3+) and penta‐coordinated divalent iron ([5]Fe2+), with the Fe in the Fe‐rich layer being more reduced than the matrix. From these data, we conclude the following: a) the significant differences in the Fe oxidation state between LDG and tektites, together with the wide intra‐sample variations in the Fe‐oxidation state, confirm that LDG is an impact glass and not a tektite‐like glass; b) the higher Fe content, coupled with the more reduced state of the Fe, in the Fe‐rich layers suggests that some or most of the Fe in these layers may be directly derived from the meteoritic projectile and that it is not of terrestrial origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号