首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

2.
The presence of craters with central peaks on the ice satellites of Saturn implies that their surface elastic strength is comparable to that of the Moon, Mars, and Mercury which have central peak craters, rather than that of the Jovian ice satellites Ganymede and Callisto which do not have central peak craters.  相似文献   

3.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

4.
Craters with central peaks occur on the Uranian satellites Ariel, Umbriel, Titania, and Oberon; but do not occur on Miranda. The inelastic surface of Miranda is apparently due to the heavy tectonic reworking of its surface. A theory of expansion/contraction is proposed to explain the tectonic history of Miranda. The existence of central peak craters on the four largest satellites of Uranus implies that they have surface strengths similar to those of the Saturnian satellites and silicate bodies of the inner solar system which all have central peak craters. The absence of central peak craters on Miranda implies that it has an inelastic surface similar to those of the Jovian ice satellites Ganymede and Callisto whose surfaces do not contain central peak craters.  相似文献   

5.
Abstract— We examine the morphology of central peak craters on the Moon and Ganymede in order to investigate differences in the near‐surface properties of these bodies. We have extracted topographic profiles across craters on Ganymede using Galileo images, and use these data to compile scaling trends. Comparisons between lunar and Ganymede craters show that crater depth, wall slope and amount of central uplift are all affected by material properties. We observe no major differences between similar‐sized craters in the dark and bright terrain of Ganymede, suggesting that dark terrain does not contain enough silicate material to significantly increase the strength of the surface ice. Below crater diameters of ?12 km, central peak craters on Ganymede and simple craters on the Moon have similar rim heights, indicating comparable amounts of rim collapse. This suggests that the formation of central peaks at smaller crater diameters on Ganymede than the Moon is dominated by enhanced central floor uplift rather than rim collapse. Crater wall slope trends are similar on the Moon and Ganymede, indicating that there is a similar trend in material weakening with increasing crater size, and possibly that the mechanism of weakening during impact is analogous in icy and rocky targets. We have run a suite of numerical models to simulate the formation of central peak craters on Ganymede and the Moon. Our modeling shows that the same styles of strength model can be applied to ice and rock, and that the strength model parameters do not differ significantly between materials.  相似文献   

6.
Bonnie J. Buratti 《Icarus》1984,59(3):392-405
Photometric analysis of Voyager images of the medium-sized icy satellites of Saturn shows that their surfaces exhibit a wide range of scattering properties. At low phase angles, Rhea and Dione closely follow lunar behavior with almost no limb darkening. Mimas, Tethys, and especially Enceladus shiw significant limb darkening at low phase angles, which suggests multiple scattering is important for their surfaces. A simple photometric function of the form I/F = f(α)0/(μ + μ0) + (1 ? A)μ0 has been fit to the observations. For normal reflectances <0.6, we find lunar-like scattering properties (A = 1). No satellite's surface can be described by Lambert's Law (A = 0). Dione exhibits the widest albedo variations (about 50%). A longitudinal dark stripe which represents a 15% decrease in albedo is situated near the center of the trailing side of Tethys. A correlation is found between the albedo and color of the satellites: the darker objects are redder. Similarly, darker areas of each satellite are redder. Spectral reflectances of Mimas and Enceladus can be derived for the first time. After the proper calibrations to the Voyager color images are made, it is found that both satellites have remarkably flat spectra into the ultraviolet.  相似文献   

7.
Recent geomorphic, remote sensing, and atmospheric modeling studies have shown evidence for abundant ground ice deposits in the martian mid-latitudes. Numerous potential water/ice-rich flow features have been identified in craters in these regions, including arcuate ridges, gullies, and small flow lobes. Previous studies (such as in Newton Basin) have shown that arcuate ridges and gullies are mainly found in small craters (∼2-30 km in diameter). These features are located on both pole-facing and equator-facing crater walls, and their orientations have been found to be dependent on latitude. We have conducted surveys of craters >20 km in diameter in two mid-latitude regions, one in the northern hemisphere in Arabia Terra, and one in the southern hemisphere east of Hellas basin. In these regions, prominent lobes, potentially ice-rich, are commonly found on the walls of craters with diameters between ∼20-100 km. Additional water/ice-rich features such as channels, valleys, alcoves, and debris aprons have also been found in association with crater walls. In the eastern Hellas study region, channels were found to be located primarily on pole-facing walls, whereas valleys and alcoves were found primarily on equator-facing walls. In the Arabia Terra study region, these preferences are less distinct. In both study regions, lobate flows, gullies, and arcuate ridges were found to have pole-facing orientation preferences at latitudes below 45° and equator-facing orientation preferences above 45°, similar to preferences previously found for gullies and arcuate ridges in smaller craters. Interrelations between the features suggest they all formed from the mobilization of accumulated ice-rich materials. The dependencies of orientations on latitude suggest a relationship to differences in total solar insolation along the crater walls. Differences in slope of the crater wall, differences in total solar insolation with respect to wall orientation, and variations in topography along the crater rim can explain the variability in morphology of the features studied. The formation and evolution of these landforms may best be explained by multiple cycles of deposition of ice-rich material during periods of high obliquity and subsequent modification and transport of these materials down crater walls.  相似文献   

8.
We present the results of our systematic study of the long-period orbital evolution of all of the outer Saturnian, Uranian, and Neptunian satellites known to date. The plots of the orbital elements against time give a clear idea of the pattern of the orbital evolution of each satellite. The tabular data allow us to estimate the basic parameters of the evolving orbits, including the ranges of variation in the semimajor axes, eccentricities, and ecliptical inclinations as well as the variation periods and mean motions of the arguments of pericenters and the longitudes of the nodes. We compare the results obtained by numerically integrating the rigorous equations of the perturbed motion of the satellites with the analytical and numerical-analytical results. The satellite orbits with a librational pattern of variation in the arguments of pericenters are set apart.  相似文献   

9.
Eugene I. Smith 《Icarus》1976,28(4):543-550
New central peak-crater size data for Mars shows that a higher percentage of relatively unmodified Martian craters have central peaks than do fresh lunar craters below a diameter of 30 km. For example, in the diameter range 10 to 20 km, 60% of studied Martian craters have central peaks compared to 26% for the Moon. Gault et al. (1975, J. Geophys. Res.80, 2444–2460) have demonstrated that central peaks occur in smaller craters on Mercury than on the Moon, and that this effect is due to the different gravity fields in which the craters formed. Similar differences when comparing Mars and the Moon show that gravity has affected the diameter at which central peaks form on Mars. Erosion on Mars, therefore, does not completely mask differences in crater interior structure that are caused by differences in gravity. Effects of Mars' higher surface gravity when compared to the Moon are not detected when comparing terrace and crater shape data. The morphology-crater size statistics also show that a full range of crater shapes occur on Mars, and craters tend to become more morphologically complex with increasing diameter. Comparisons of Martian and Mercurian crater data show differences which may be related to the greater efficacy of erosion on Mars.  相似文献   

10.
The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto.Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes — the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System.Based on a paper presented at the 1985 Royal Astronomical Society of New Zealand Conference, Hamilton, New Zealand.  相似文献   

11.
The Visual Infrared Mapping Spectrometer (VIMS) onboard the CASSINI spacecraft obtained new spectral data of the icy satellites of Saturn after its arrival at Saturn in June 2004. VIMS operates in a spectral range from 0.35 to 5.2 μm, generating image cubes in which each pixel represents a spectrum consisting of 352 contiguous wavebands.As an imaging spectrometer VIMS combines the characteristics of both a spectrometer and an imaging instrument. This makes it possible to analyze the spectrum of each pixel separately and to map the spectral characteristics spatially, which is important to study the relationships between spectral information and geological and geomorphologic surface features.The spatial analysis of the spectral data requires the determination of the exact geographic position of each pixel on the specific surface and that all 352 spectral elements of each pixel show the same region of the target. We developed a method to reproject each pixel geometrically and to convert the spectral data into map projected image cubes. This method can also be applied to mosaic different VIMS observations. Based on these mosaics, maps of the spectral properties for each Saturnian satellite can be derived and attributed to geographic positions as well as to geological and geomorphologic surface features. These map-projected mosaics are the basis for all further investigations.  相似文献   

12.
This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ∼38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.  相似文献   

13.
The density of craters larger than 1 km in diameter has been determined for the entire surface of Phobos, and half that of Deimos. Densities of craters as small as 10 m on Phobos and 5 m on Deimos have been measured for small areas of the satellites. On both objects, crater densities are similar and yield plots which have slopes close to -1.9 on both incremental and cumulative log-log graphs. These densities are close to those expected to obtain under equilibrium conditions. They are also near the maximum predicted, based on the fragmentation lifetimes of the two objects: that is, the densities are near to the maximum possible before such objects are likely to suffer an impact severe enough to disrupt them. While the observed crater densities cannot be converted to absolute ages in any rigorous fashion, they can be understood if the flux at Mars has been similar to that at the Moon and if the surfaces that we see today generally date back to the end of the period of heavy bombardment some 4 billion years ago. It is extremely unlikely that the surfaces are younger than 1 billion years. There are no large areas on Phobos for which crater densities differ by more than a factor of 3 from the average.  相似文献   

14.
The geometry of the furrows of Galileo Regio indicates that they are not of impact origin, and irrelevant to discussion about large impact effects. The detailed study of three large impact basins indicates that their transient cavity radii are different from previously reported values. Because of the relations between crater's size and lithospheric thickness, these new values of basins radii would constrain further models of Ganymede's thermal evolution. The geometry of lineaments around these three basins, which occurred on grooved terrains, indicates that these impacts induced tectonic motions along a preexisting planetary wide grid pattern. This pattern influenced also the formation of the furrows on Galileo Regio. That would indicate that the grooved terrains are only superficial layers and that they were formed without destruction or rotation of their basement.  相似文献   

15.
Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ± 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ×) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ± 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ± 0.6)0.5D.The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences.  相似文献   

16.
The properties of gas-dust disks that surrounded Jupiter and Saturn during the final stage of their formation are analyzed. The sizes of the disks are determined by the total planetocentric angular momentum of the matter accreted by planets and correspond to the sizes of the orbits of their largest satellites. The mass of the solid component of disks is limited from below by the total mass of the Galilean satellites of Jupiter (no less than 4 × 1026 g) and the mass of the largest Saturnian satellites (1.4 × 1026 g), whereas the mass of the gaseous component is limited from above by the amount of hydrogen and helium that could have been later lost by the disks. Our analysis of the known mechanisms of dissipation of gas showed that its simultaneous content in the disks relative to the solid component was much lower than the corresponding gas-to-solid ratio in the Sun. A certain amount of solid compounds (including ice) could have been brought into the disks with planetesimals, which had undergone mutual collisions in the neighborhood of giant planets and served as germs of satellites. The bulk of solid matter appears to have been captured into disks when the latter were crossed by smaller and intermediate-sized planetesimals, which then became parts of the satellites.  相似文献   

17.
Laurel E. Senft 《Icarus》2011,214(1):67-81
Impact craters on icy satellites display a wide range of morphologies, some of which have no counterpart on rocky bodies. Numerical simulation studies have struggled to reproduce the diversity of features, such as central pits and transitions in crater depth with increasing diameter, observed on the icy Galilean satellites. The transitions in crater depth (at diameters of about 26 and 150 km on Ganymede and Callisto) have been interpreted as reflecting subsurface structure. Using the CTH shock physics code, we model the formation of craters with diameters between 400 m and about 200 km on Ganymede using different subsurface temperature profiles. Our calculations include recent improvements in the model equation of state for H2O and quasi-static strength parameters for ice. We find that the shock-induced formation of dense high-pressure polymorphs (ices VI and VII) creates a gap in the crater excavation flow, which we call discontinuous excavation. For craters larger than about 20 km, discontinuous excavation concentrates a hot plug of material (>270 K and mostly on the melting curve) in the center of the crater floor. The size and occurrence of the hot plug are in good agreement with the observed characteristics of central pit craters, and we propose that a genetic link exists between them. We also derive depth versus diameter curves for different internal temperature profiles. In a 120 K isothermal crust, calculated craters larger than about 30 km diameter are deeper than observed and do not reproduce the transition at about 26 km diameter. Calculated crater depths are shallower and in good agreement with observations between about 30 and 150 km diameter using a warm thermal gradient representing a convective interior. Hence, the depth-to-diameter transition at about 26 km reflects thermal weakening of ice. Finally, simulation results generally support the hypothesis that the anomalous interior morphologies for craters larger than 100 km are related to the presence of a subsurface ocean.  相似文献   

18.
The relation between the size and velocity of impact crater ejecta has been studied by both laboratory experiments and numerical modeling. An alternative method, used here, is to analyze the record of past impact events, such as the distribution of secondary craters on planetary surfaces, as described by Vickery (Icarus 67 (1986) 224; Geophys. Res. Lett. 14 (1987) 726). We first applied the method to lunar images taken by the CLEMENTINE mission, which revealed that the size-velocity relations of ejecta from craters 32 and 40 km in diameter were similar to those derived by Vickery for a crater 39 km in diameter. Next, we studied the distribution of small craters in the vicinity of kilometer-sized craters on three images from the Mars Orbiter Camera (MOC) on board the Mars Global Surveyor (MGS). If these small craters are assumed to be secondaries ejected from the kilometer-sized crater in each image, the ejection velocities are of hundreds of meters per second. These data fill a gap between the previous results of Vickery and those of laboratory studies.  相似文献   

19.
Images of the icy Saturnian satellites Mimas, Enceladus, Tethys, Dione, Rhea, Iapetus, and Phoebe, derived by the Voyager and Cassini cameras are used to produce new local high-resolution image mosaics as well as global mosaics [http://ciclops.org, http://photojournal.jpl.nasa.gov]. These global mosaics are valuable both for scientific interpretation and for the planning of future flybys later in the ongoing Cassini orbital tour. Furthermore, these global mosaics can be extended to standard cartographic products.  相似文献   

20.
Noteworthy phenomena, viz., mutual occultations and eclipses in the system of Jupiter’s Galilean satellites and in the system of Saturn’s principal satellites, will occur in 2009. The relatively simple photometry of these phenomena makes it possible to obtain positional data at a higher accuracy than can be achieved in regular astrometric observations. The visibility conditions for the satellites are described here and observational recommendations are given. The ephemerides of these phenomena are available via the Internet from the MULTI-SAT ephemerides server at http:/www.sai.msu.ru/neb/nss/index.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号