首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nathalia Alzate 《Icarus》2011,211(2):1274-1283
Central pit craters are common on Mars, Ganymede and Callisto, and thus are generally believed to require target volatiles in their formation. The purpose of this study is to identify the environmental conditions under which central pit craters form on Ganymede. We have conducted a study of 471 central pit craters with diameters between 5 and 150 km on Ganymede and compared the results to 1604 central pit craters on Mars (diameter range 5-160 km). Both floor and summit pits occur on Mars whereas floor pits dominate on Ganymede. Central peak craters are found in similar locations and diameter ranges as central pit craters on Mars and overlap in location and at diameters <60 km on Ganymede. Central pit craters show no regional variations on either Ganymede or Mars and are not concentrated on specific geologic units. Central pit craters show a range of preservation states, indicating that conditions favoring central pit formation have existed since crater-retaining surfaces have existed on Ganymede and Mars. Central pit craters on Ganymede are generally about three times larger than those on Mars, probably due to gravity scaling although target characteristics and resolution also may play a role. Central pits tend to be larger relative to their parent crater on Ganymede than on Mars, probably because of Ganymede’s purer ice crust. A transition to different characteristics occurs in Ganymede’s icy crust at depths of 4-7 km based on the larger pit-to-crater-diameter relationship for craters in the 70-130-km-diameter range and lack of central peaks in craters larger than 60-km-diameter. We use our results to constrain the proposed formation models for central pits on these two bodies. Our results are most consistent with the melt-drainage model for central pit formation.  相似文献   

2.
Eugene I. Smith 《Icarus》1976,28(4):543-550
New central peak-crater size data for Mars shows that a higher percentage of relatively unmodified Martian craters have central peaks than do fresh lunar craters below a diameter of 30 km. For example, in the diameter range 10 to 20 km, 60% of studied Martian craters have central peaks compared to 26% for the Moon. Gault et al. (1975, J. Geophys. Res.80, 2444–2460) have demonstrated that central peaks occur in smaller craters on Mercury than on the Moon, and that this effect is due to the different gravity fields in which the craters formed. Similar differences when comparing Mars and the Moon show that gravity has affected the diameter at which central peaks form on Mars. Erosion on Mars, therefore, does not completely mask differences in crater interior structure that are caused by differences in gravity. Effects of Mars' higher surface gravity when compared to the Moon are not detected when comparing terrace and crater shape data. The morphology-crater size statistics also show that a full range of crater shapes occur on Mars, and craters tend to become more morphologically complex with increasing diameter. Comparisons of Martian and Mercurian crater data show differences which may be related to the greater efficacy of erosion on Mars.  相似文献   

3.
New crater size-shape data were compiled for 221 fresh lunar craters and 152 youthful mercurian craters. Terraces and central peaks develop initially in fresh craters on the Moon in the 0–10 km diameter interval. Above a diameter of 65 km all craters are terraced and have central peaks. Swirl floor texture is most common in craters in the size range 20–30 km, but it occurs less frequently as terraces become a dominant feature of crater interiors. For the Moon there is a correlation between crater shape and geomorphic terrain type. For example, craters on the maria are more complex in terms of central peak and terrace detail at any given crater diameter than are craters in the highlands. These crater data suggest that there are significant differences in substrate and/or target properties between maria and highlands. Size-shape profiles for Mercury show that central peak and terrace onset is in the 10–20 km diameter interval; all craters are terraced at 65 km, and all have central peaks at 45 km. The crater data for Mercury show no clear cut terrain correlation. Comparison of lunar and mercurian data indicates that both central peaks and terraces are more abundant in craters in the diameter range 5–75 km on Mercury. Differences in crater shape between Mercury and the Moon may be due to differences in planetary gravitational acceleration (gMercury=2.3gMoon). Also differences between Mercury and the Moon in target and substrate and in modal impact velocity may contribute to affect crater shape.  相似文献   

4.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

5.
Pangboche crater (17.2°N, 226.7°E; 10.4 km dia.) lies close to the summit of Olympus Mons volcano, Mars, at an elevation of ~20.9 km above the datum. Given a scale height of 11.1 km for the atmosphere, this relatively large fresh crater most likely formed at an atmospheric pressure <1 mbar in essentially volatile‐free young lava flows. Detailed analysis of Pangboche crater from High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images reveals that volatile‐related features (e.g., fluidized ejecta layers and pitted floor material) are absent. In contrast, abundant impact melt occurs on the floor, inner walls, and rim of the crater, and there is an extensive field of secondary craters that extend up to approximately 45 km from the rim crest. All of these attributes argue that it was the absence of volatiles in the target rocks at the time of crater formation, rather than the thin atmosphere, which had a controlling influence on crater morphology. Digital elevation data derived from the CTX images reveal that Pangboche crater has a depth of about 954 m (depth/diameter = approximately 0.092) and that uplifted target rocks comprise about 58% of the relief of the 180 m‐high north rim. As the target material comprised a sequence of layered lava flows, Pangboche crater may well represent the best crater on Mars for direct comparison with craters formed on the Moon (permitting variations in gravitational effects to be investigated) or on Mercury (allowing the role of the atmosphere to be studied).  相似文献   

6.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

7.
Craters on the Earth, Mars, and the Moon show a spectrum of morphologies with diameter increasing from simple, bowl-shaped craters through craters with increasingly complex central peaks, to craters with “peak rings” and basins with multiple concentric scarps. In each category there is a range of diameters, centered around a characteristic diameter, Dc. It is found that Dc decreases as the size of the planet increases. Several possible explanations are considered. It is suggested that the effect results from a gravity scaling law derived here and having approximately from the Dc 1/g1.25, where g is the surface gravity. All geological structures in which gravity is the dominant parameter affecting the morphology should follow such a law.  相似文献   

8.
Although we can observe current activity on Saturn's satellite Enceladus with Cassini, insight into past activity is best achieved (for now) through studying the impact crater distributions. Furthermore, approximation of terrain ages can only be attained through calculations using crater densities and estimations of impact rates in the saturnian system. Here we focus on what the impact crater distribution in Enceladus' heavily cratered plains can tell us about Enceladus' geologic history. We use Cassini ISS images to count craters in the heavily cratered plains on Enceladus, along with Rhea, Dione, Tethys and Mimas as references, to develop and compare their size-frequency distributions. Comparisons of our counts show that Enceladus' cratered plains distribution is unique in that it appears to have a relative deficiency of craters for diameters ?2 km and ?6 km compared to the other satellites' heavily cratered plains. Our data also indicates that the impact crater density within the cratered plains changes with latitude. Specifically, both the north and south mid-latitude regions have approximately three times higher density than the equatorial region. We hypothesize that the “missing” small and large craters in Enceladus' cratered plains is due to a combination of viscous relaxation of the larger craters, and burial of the relaxed large craters and small craters by south polar plume and possibly E-ring material. We also conclude that the spatial density distribution is not consistent with recent polar wander.  相似文献   

9.
Reta F. Beebe 《Icarus》1980,44(1):1-19
The simple-to-complex transition for impact craters on Mars occurs at diameters between about 3 and 8 km. Ballistically emplaced ejecta surround primarily those craters that have a simple interior morphology, whereas ejecta displaying features attributable to fluid flow are mostly restricted to complex craters. Size-dependent characteristics of 73 relatively fresh Martian craters, emphasizing the new depth/diameter (d/D) data of D. W. G. Arthur (1980, to be submitted for publication), test two hypotheses for the mode of formation of central peaks in complex craters. In particular, five features appear sequentially with increasing crater size: first flat floors (3–4 km), then central peaks and shallower depths (4–5 km), next scalloped rims (? km), and lastly terraced walls (~8 km). This relative order indicates that a shallow depth of excavation and an unspecified rebound mechanism, not centripetal collapse and deep sliding, have produced central peaks and in turn have facilitated failure of the rim. The mechanism of formation of a shallow crater remains elusive, but probably operates only at the excavation stage of impact. This interpretation is consistent with two separate and complementary lines of evidence. First, field data have documented only shallow subsurface deformation and a shallow transient cavity in complex terrestrial meteorite craters and in certain surface-burst explosion craters; thus the shallow transient cavities of complex craters never were geometrically similar to the deep cavities of simple craters. Second, the average depths of complex craters and the diameters marking the transition from simple to complex craters on Mars and on three other terrestrial planets vary inversely with gravitational acceleration at the planetary surface, g, a variable more important in the excavation of a crater than in any subsequent modification of its geometry. The new interpretation is summarized diagrammatically for complex craters on all planets.  相似文献   

10.
Abstract– We present a case modeling study of impact crater formation in H2O‐bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O‐ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30–50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater‐wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water‐related features, both morphologic and spectroscopic, that high‐resolution images of Mars are now detecting within many Martian craters.  相似文献   

11.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   

12.
Near-infrared spectra, 0.65–2.5 μm, are presented for Tethys, Dione, Rhea, Iapetus, and Hyperion. Water ice absorptions at 2.0, 1.5, and 1.25 μm are seen in the spectra of all five objects (except the 1.25-μm band was not detected in spectra of Hyperion) and the weak 1.04-μm ice absorption is detected on the leading and trailing sides of Rhea, and the trailing side of Dione. Upper limits to the 1.04-μm ice band depth are <0.3% for the leading side of Dione; <0.7% for the leading side of Iapetus, and the trailing side of Tethys; <1% on the trailing side of Iapetus; and <5% on the leading side of Tethys. The leading-trailing side ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are determined for the amount of particulates, trapped gases, and amonium hydroxide on the surface. The surfaces of Saturn's satellites (except the dark side of Iapetus) are nearly pure water ice, with probably less than about 1 wt% particulate minerals. The ice could be clathrates with as much as a few weight percent trapped gases. The upper limit of amonium hydroxide depends on the spectral data precision and varies from ~ 1 wt% NH3 for the leading side of Rhea to ~ 10 wt% NH3 for Dione.  相似文献   

13.
An inversion procedure to obtain the reflectance of the central region of a satellite's disk from lunar occultation data is presented. The scheme assumes that the limb darkening of the satellite depends only on the radial distance from the center of the disk. Given this assumption, normal reflectances can be derived that are essentially independent of the limb darkening and the diameter of the satellite. The procedure has been applied to our observations of the March 1974 lunar occultation of Tethys, Dione, Rhea, Titan, and Iapetus. In the V passband we derive the following normal reflectances: Rhea (0.97±0.20), Titan (0.24±0.03), Iapetus, bright face (0.60±0.14). For Tethys and Dione the values derived have large uncertainties, but are consistent with our result for Rhea.  相似文献   

14.
We find evidence, by both observation and analysis, that primary crater ejecta play an important role in the small crater (less than a few km) populations on the saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856–875) to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (vmin), and (iii) velocities less than vmin. Although the vast majority of mass on each satellite is ejected at speeds less than vmin, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. In particular, Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface, see Dobrovolskis, A.R., Lissauer, J.J. [2004]. Icarus 169, 462–473; Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill, P. [2005]. Icarus 178, 104–123; Zahnle, K., Alvarellos, J.L., Dobrovolskis, A.R., Hamill, P. [2008]. Icarus 194, 660–674) is not yet well understood. Finally, our work provides further evidence for a “shallow” size–frequency distribution (slope index of ~2 for a differential power-law) for comets a few kilometers diameter and smaller.  相似文献   

15.
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter (∼125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater size-frequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone.  相似文献   

16.
Karl R. Blasius 《Icarus》1976,29(3):343-361
Mariner 9 images of the four great volcanic shields of the Tharsis region of Mars show many circular craters ranging in diameter from 100mm to 20 km. Previous attempts to date the volcanoes from their apparent impact crater densities yielded a range of results. The principal difficulty is sorting volcanic from impact craters for diameters ?1 km. Many of the observed craters are aligned in prominent linear and concentric patterns suggestive of volcanic origin. In this paper an attempt is made to date areas of shield surface, covered with high resolution images using only scattered small (?1 km) craters of probable impact origin. Craters of apparent volcanic origin are systematically excluded from the dating counts.The common measure of age, deduced for all surfaces studied, is a calculated “crater age” F′ defined as the number of craters equal to or larger than 1 km in diameter per 106km2. The conclusions reached from comparing surface ages and their geological settings are: (1) Lava flow terrain surfaces with ages, F′, from 180 to 490 are seen on the four great volcanoes. Summit surfaces of similar ages, F′ = 360 to 420, occur on the rims of calderas of Arsia Mons, Pavonis Mons, and Olympus Mons. The summit of Ascraeus Mons is possibly younger; F′ is calculated to be 180 for the single area which could be dated. (2) One considerably younger surface, F′ < 110, is seen on the floor of Arsia Mon's summit caldera. (3) Nearly crater free lava flow terrain surfaces seen on Olympus Mons are estimated to be less than half the age of a summit surface. The summit caldera floor is similarly young. (4) The pattern of surface ages on the volcanoes suggests that their eruption patterns are similar to those of Hawaiian basaltic shields. The youngest surfaces seem concentrated on the mid-to-lower flanks and within the summit calderas. (5) The presently imaged sample of shield surface, though incomplete, clearly shows a broad range of ages on three volcanoes—Olympus, Arsia, and Pavonis Mons.Estimated absolute ages of impact dated surfaces are obtained from two previously published estimates of the history of flux of impacting bodies on Mars. The estimated ranges of age for the observed crater populations are 0.5 to 1.2b.y. and 0.07 to 0.2b.y. Areas which are almost certainly younger, less than 0.5 or 0.07b.y., are also seen. The spans of surface age derived for the great shields are minimum estimates of their active lifetimes, apparently very long compared to those of terrestrial volcanoes.  相似文献   

17.
18.
Abstract— If impact stress reverberation is the primary gradational process on an asteroid at global scales, then the largest undegraded crater records an asteroid's seismological response. The critical crater diameter Dcrit is defined as the smallest crater whose formation disrupts all previous craters globally up to its size; it is solved for by combining relationships for crater growth and for stress attenuation. The computation for Dcrit gives a simple explanation for the curious observation that small asteroids have only modest undegraded craters, in comparison to their size, whereas large asteroids have giant undegraded craters. Dcrit can even exceed the asteroid diameter, in which case all craters are “local” and the asteroid becomes crowded with giant craters. Dcrit is the most recent crater to have formed on a blank slate; when it is equated to the measured diameter of the largest undegraded crater on known asteroids, peak particle velocities are found to attenuate with the 1.2–1.3 power of distance—less attenuative than strong shocks, and more characteristic of powerful seismic disturbances. This is to be expected, since global degradation can result from seismic (cm s?1) particle velocities on small asteroids. Attenuation, as modeled, appears to be higher on asteroids known to be porous, although these are also bodies for which different crater scaling rules might apply.  相似文献   

19.
We present values from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) of four fundamental disk-integrated spectrophotometric properties (bolometric Bond albedo, solar phase curve, phase integral, and geometric albedo at 7-15 different wavelengths in the λ = 0.35-5.1 μm range) for five mid-sized saturnian icy satellites: Rhea, Dione, Tethys, Mimas, and Enceladus. These values, which include data from the period 2004-2008 and add to past VIMS phase curves, include opposition surge effects at down to fractions of a degree in solar phase angle for several moons and extend to over double the solar phase angle coverage of the Voyager mission. We also present new rotational light curves for Rhea and Dione at 7 near-infrared bands not previously available in ground-based or spacecraft studies. The bolometric Bond albedos we derive are as follows: 0.48 ± 0.09 (Rhea), 0.52 ± 0.08 (Dione), 0.61 ± 0.09 (Tethys), 0.67 ± 0.10 (Mimas), and 0.85 ± 0.11 (Enceladus). We also provide breakdowns of the major photometric quantities in both leading and trailing hemispheres. These refined parameters can be used to construct future bolometric Bond albedo maps that will contribute to surface composition identification studies, as well as models of volatile transport and sublimation. Through such applications, these data will help to determine the physical properties of surface particles, how the E-ring affects the inner saturnian moons, what is responsible for the dark albedo patterns seen on Tethys, and if these moons (e.g., Dione) are geologically active.  相似文献   

20.
Crater's density distribution versus satellitographical longitude was searched for seven icy satellites: two of Jupiter (Ganymede and Callisto) and five of Saturn (Mimas, Tethys, Dione, Rhea and Iapetus). Craters were classified according to their size. Four bins of the craters' diameter were used. Density distributions were found in the longitudinal sectors of the near-equatorial stripes that circumscribe the satellites. The size distributions (R-plots) were done independently for each of the eight longitudinal sectors of the satellites. Searching for the leading/trailing (apex/antapex) and the near-side/far-side asymmetry was done. It was found that the crater density is longitudinally asymmetric for all seven satellites being studied. However, the apex–antapex asymmetry is much less pronounced than predicted by theory of Zahnle et al. (2003), for impacts on the satellites by ecliptic comets. We conclude that the impact craters observed on the considered satellites are mostly originated from planetocentric swarm of debris. In that case longitudinal asymmetry is not expected, as stated by Horedt and Neukum, 1984a, Horedt and Neukum, 1984b. However, cratering longitudinal asymmetry that we observe for Mimas perfectly agrees with calculations of Alvarellos et al. (2005). It is very likely that important part of craters on Mimas were formed due to impacts of ejecta originated from crater Herschel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号