首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cover          下载免费PDF全文
Cover: Light microscope image of 950 μm‐long Stardust track, C2045,4,178,0,0 (#178), of cometary grains captured in aerogel at 6.1 kms‐1. Hicks et al. discuss the identifi cation of magnetite in this and other Stardust tracks. The magnetite is interpreted to have formed through water‐rock reaction on the comet Wild 2 parent body. Scale bar = 200 μm. Image courtesy of L. Hicks.  相似文献   

2.
Abstract– The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s?1. We performed high‐resolution three‐dimensional imaging and X‐ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross‐sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron‐based X‐ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.  相似文献   

3.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

4.
Abstract— Three‐dimensional structures and elemental abundances of four impact tracks in silica aerogel keystones of Stardust samples from comet 81P/Wild 2 (bulbous track 67 and carrot‐type tracks 46, 47, and 68) were examined non‐destructively by synchrotron radiation‐based microtomography and X‐ray fluorescence analysis. Track features, such as lengths, volumes and width as a function of track depth, were obtained quantitatively by tomography. A bulbous portion was present near the track entrance even in carrot‐type tracks. Each impact of a cometary dust particle results in the particle disaggregated into small pieces that were widely distributed on the track walls as well as at its terminal. Fe, S, Ca, Ni, and eight minor elements are concentrated in the bulbous portion of track 68 as well as in terminal grains. It was confirmed that bulbous portions and thin tracks were formed by disaggregation of very fine fragile materials and relatively coarse crystalline particles, respectively. The almost constant ratio of whole Fe mass to track volume indicates that the track volume is almost proportional to the impact kinetic energy. The size of the original impactor was estimated from the absolute Fe mass by assuming its Fe content (CI) and bulk density. Relations between the track sizes normalized by the impactor size and impact conditions are roughly consistent with those of previous hypervelocity impact experiments.  相似文献   

5.
Abstract– Raman analyses were performed of individual micrometer‐sized fragments of material returned to Earth by the NASA Stardust mission to comet 81P/Wild 2. The studied fragments originated from grains (C2054,0,35,91,0 and C2092,6,80,51,0) of two different penetration tracks that occurred in two different silica aerogel collector cells. All fragments of both particles have Raman spectra characteristic of amorphous sp2‐bonded carbon that are in general agreement with the results published in previous Stardust particle studies. The present study, however, does not focus on the discussion of specific details of the D and G band parameters, but rather reports on additional information that can be obtained from returned Stardust samples via Raman spectroscopy. Most notably, the Raman spectra show that all analyzed fragments of the particles were contaminated with the capture medium (i.e., aerogel). The silica aerogel is laced with organic aliphatic and aromatic hydrocarbon impurities that resulted in strong bands in the ~ 2900 Δcm?1 spectral range (C‐H stretching modes). Aerogel bands are also found in the 1000–1600 Δcm?1 spectral range, where they overlap with the bands of the amorphous sp2‐bonded carbon. The peaks associated with the aerogel contamination differ between the two grains that originated from two different aerogel cells. In addition to the bands due to aerogel contamination and the always present sp2‐bonded carbon bands, fragments of particle C2092,6,80,51,0 also show Raman peaks for pyrrhotite and Fa30Fo70 olivine. Complete (up to 4000 Δcm?1) raw and baseline‐corrected Raman spectra of the Stardust particles are shown and discussed in detail.  相似文献   

6.
Abstract— We report analyses of aerogel tracks using (1) synchrotron X‐ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X‐ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1–2), and a single ~1 mm aerogel track from the Stardust cometary sample collector (1–3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view (‘lambda‐tomography’). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from ~17 to ~1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3‐D deconvolution method using an estimated point‐spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non‐destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3‐D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle‐aerogel interaction histories of Stardust grains.  相似文献   

7.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

8.
Abstract— New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm?3 (similar to soda‐lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by μm‐scale and smaller sub‐grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse finegrained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.  相似文献   

9.
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 “Febo” in aerogel, which contains fine‐grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine‐grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Dark‐field imaging and multidetector energy‐dispersive X‐ray mapping were used to compare GEMS‐like‐objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS‐like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant, is present, consistent with ablation, melting, abrasion, and mixing of the SiOx aerogel with crystalline Fe‐sulfide and minor enstatite, high‐Ni sulfide, and augite identified by elemental mapping in the terminal particle. Thus, GEMS‐like objects in “caches” of fine‐grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.  相似文献   

10.
Helium and neon distributions are reported for a variety of Stardust comet 81P/Wild 2 samples, including particle tracks and terminal particles, cell surface and subsurface slices from the comet coma and interstellar particle collection trays, and numerous small aerogel blocks extracted from comet cells C2044 and C2086. Discussions and conclusions in several abstracts published during the course of the investigation are included, along with the relevant data. Measured isotope ratios span a broad range, implying a similar range for noble gas carriers in the Wild 2 coma. The meteoritic phase Q‐20Ne/22Ne ratio was observed in several samples. Some of these, and others, exhibit 21Ne excesses too large for attribution to spallation by galactic cosmic ray irradiation, suggesting exposure to a solar proton flux greatly enhanced above current levels in an early near‐Sun environment. Still others display evidence for a solar wind component, particularly one C2086 block with large abundances of isotopically solar‐like helium and neon. Eighty‐nine small aerogel samples were cut from depths up to several millimeters below the cell C2044 surface and several millimeters away from the axis of major track T41. A fraction of these yielded measurable and variable helium and neon abundances and isotope ratios, although none contained visible tracks or carrier particle fragments and their locations were beyond estimated penetration ranges for small particles or ions incident on the cell surface, or for lateral ejecta from T41. Finding plausible emplacement mechanisms and sources for these gases is a significant challenge raised by this study.  相似文献   

11.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   

12.
In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low‐density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in‐situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3‐mediated electron beam–induced etching. The porous, low‐density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy‐dispersive X‐ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.  相似文献   

13.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

14.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

15.
Abstract– We have used synchrotron Fe‐XANES, XRS, microRaman, and SEM‐TEM analyses of Stardust track 41 slice and track 121 terminal area slices to identify Fe oxide (magnetite‐hematite and amorphous oxide), Fe‐Ti oxide, and V‐rich chromite (Fe‐Cr‐V‐Ti‐Mn oxide) grains ranging in size from 200 nm to ~10 μm. They co‐exist with relict FeNi metal. Both Fe‐XANES and microRaman analyses suggest that the FeNi metal and magnetite (Fe2O3FeO) also contain some hematite (Fe2O3). The FeNi has been partially oxidized (probably during capture), but on the basis of our experimental work with a light‐gas gun and microRaman analyses, we believe that some of the magnetite‐hematite mixtures may have originated on Wild 2. The terminal samples from track 121 also contain traces of sulfide and Mg‐rich silicate minerals. Our results show an unequilibrated mixture of reduced and oxidized Fe‐bearing minerals in the Wild 2 samples in an analogous way to mineral assemblages seen in carbonaceous chondrites and interplanetary dust particles. The samples contain some evidence for terrestrial contamination, for example, occasional Zn‐bearing grains and amorphous Fe oxide in track 121 for which evidence of a cometary origin is lacking.  相似文献   

16.
Abstract– We have experimentally produced nanophase sulfide compounds and magnetite embedded in Si‐rich amorphous materials by flash‐cooling of a gas stream. Similar assemblages are ubiquitous, and often dominant components of samples of impact‐processed silica aerogel tiles and submicron grains from comet 81P/Wild 2 were retrieved by NASA’s Stardust mission. Although the texture and compositions of nanosulfide compounds have been reproduced experimentally, the mechanisms of formation of these minerals and their relationship with the surrounding amorphous materials have not been established. In this study, we present evidence that both of these materials may not only be produced through cooling of a superheated liquid but they may have also been formed simultaneously by flash‐cooling and subsequent deposition of a gas dominated by Fe‐S‐SiO‐O2. In a dust generator at the Goddard Space Flight Center, samples are produced by direct gas‐phase condensation from gaseous precursors followed by deposition, which effectively isolates the effects of gas‐phase reactions from the effects of melting and condensation. High‐resolution transmission electron microscopy images and energy‐dispersive spectroscopy analysis show that these experiments replicate key features of materials from type B and type C Stardust tracks, including textures, distribution of inclusions, nanophase size, and compositional diversity. We argue that gas‐phase reactions may have played a significant role in the capture environment for nanophase materials. Our results are consistent with a potential progenitor assemblage of micron and submicron‐sized sulfides and submicron silica‐bearing phases, which are commonly observed in chondritic interplanetary dust particles and in the matrices of the most pristine chondritic meteorites.  相似文献   

17.
Abstract— Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light‐gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s?1 similar to the flyby speed at comet P/Wild‐2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X‐ray diffraction (SR‐XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE‐SEM). SR‐XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR‐XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.  相似文献   

18.
Abstract– We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on “carrot” and “bulbous” tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg‐rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O‐rich forsteritic grain that may have formed in a similar environment as Ca‐, Al‐rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron‐sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.  相似文献   

19.
Abstract– The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine‐grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica‐rich glassy clumps containing Fe‐Ni‐S inclusions, vesicles and “dust‐rich” patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine‐grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.  相似文献   

20.
Abstract— Flight aerogel in Stardust allocation C2092,2,80,47,6 contains percent level concentrations of Na, Mg, Al, S, Cl, K, Ca, Cr, Mn, Fe, and Ni that have a distinctive Fe‐ and CI‐normalized distribution pattern, which is similar to this pattern for ppb level chemical impurities in pristine aerogel. The elements in this aerogel background were assimilated in non‐vesicular and vesicular glass with the numerous nanometer Fe‐Ni‐S compound inclusions. After correction for the background values, the chemical data show that this piece of comet Wild 2 dust was probably an aggregate of small (<500 nm) amorphous ferromagnesiosilica grains with many tiny Fe,Ni‐sulfide inclusions plus small Ca‐poor pyroxene grains. This distinctive Fe‐ and CI‐normalized element distribution pattern is found in several Stardust allocations. It appears to be a common feature in glasses of quenched aerogel melts but its exact nature is yet to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号