首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Crabs are important predators of inter‐tidal ecosystems, controlling the abundance and distribution of their prey populations. Often the same crab species occupies several habitats and, although their effects on prey have been quantified across habitats, crabs’ dietary and morphological responses to differing environmental influences have been overlooked. Here, we used the crabs Eriphia verrucosa and Pachygrapsus marmoratus as model species to examine differences in claw morphometry – size and wear – and diet between rocky shore and heterogeneous sand flat habitats. We predicted that, intra‐specifically, crabs from rocky shores would consume more hard‐shelled prey owing to their high availability and consequently, would display chelipeds with the following claw characteristics: a higher degree of claw damage, stronger musculature (higher propel height) and increased mechanical advantage (defined as the ratio of input lever length to output lever length) than crabs in the heterogeneous sand flat habitats. Sampling was performed in heterogeneous sand flat habitats and rocky shores of the Central Portuguese coast. For each crab species, carapace width, diet composition and several claw morphometric measures were recorded, revealing significant intra‐specific differences (using multivariate analysis) between shore types. We found that E. verrucosa and P. marmoratus consumed more hard prey on rocky shore than on sand flat habitats, which resulted in rocky shore crabs having more accentuated dentition wear and larger musculature than their sand flat habitat counterparts. We suggest that the strong response of crab claw morphometry to environmentally induced diet variations is an important mechanism in the successful adaptation of crab species to inhabit differing habitats. A major implication is that the impact of the same species on prey may vary largely with habitat type as a result of predation efficiency varying with claw condition.  相似文献   

2.
Indirect interactions are among the many important factors that influence the community structure of the rocky intertidal zone. Trait‐mediated indirect interactions, in which the presence of a predator or competitor can influence the relationship between two other species, have emerged as vital for understanding community dynamics. This study examined the effect of different crab species on the feeding habits of an intertidal snail, Nucella lapillus. Crab species were defined as being sympatric predatory (Carcinus maenas and Cancer irroratus), sympatric non‐predatory (Uca pugnax and Pagurus longicarpus), or allopatric predatory (Mithrax sculptus and Percnon gibbesi). Nucella lapillus were potentially exposed to risk cues from each of the crab species. Crabs were kept in perforated boxes, which allowed any chemical cues to be emitted but prevented direct contact. Nucella lapillus had significantly lower feeding rates in the presence of sympatric predatory crab species than N. lapillus exposed to either sympatric non‐predatory crabs or allopatric predatory crabs. There was no difference in feeding rate between N. lapillus exposed to the sympatric non‐predatory crabs and to the allopatric predatory crabs. Nucella lapillus in the presence of sympatric predatory crabs had a feeding rate of only 0.07 barnacles per snail per day, whereas N. lapillus housed with non‐predatory crabs and allopatric predatory crabs had rates of 0.11 and 0.12, respectively, suggesting that N. lapillus alter their behavior in response to chemical risk cues from local predators. These results suggest that the ability to detect and respond to risk cues is a selectively evolved trait.  相似文献   

3.
The critical role of ecological preferences and opportunity in determining contaminant uptake and adaptive responses of sexes in the wild is still poorly understood. This ecological relationship was investigated by measuring metal bioaccumulation and antioxidant activity in male and female blue crab populations from open water habitat and the littoral/inter‐tidal zone of the Lagos Lagoon. A total of 741 samples of blue crab (littoral zone: 263 females, 137 males; open water zone, 230 females, 111 males) was collected monthly over 24 months (January 2010–January 2012) from each site and the measurements of morphometric features (wet weight, carapace length, carapace width) were recorded; condition index, metal (redox active: Cu, Zn, redox inactive: Pb, Cd) concentration in tissues (gills, hepatopancreas, gonads and muscle) and antioxidant activity (superoxide dismutase, reduced glutathione, glutathione peroxidase, catalase and malondialdehyde) were measured for each sex. Monthly sediment samples for both habitats were also analysed for metals using standard methods. Female crabs were significantly larger (p < .05) with a better condition index than the male crabs across sites and seasons, while higher oxidative damage was recorded in male crabs in the littoral zone compared to the open water zone. The results show that there was a negative association between antioxidant activity and lipid peroxidation; a negative relationship between concentrations of redox‐inactive metals (Pb and Cd) and antioxidant activity in male crab tissues; and a positive relationship between uptake of a redox‐active metal (Cu) and antioxidant activity in female crab tissues. Although these trends suggest sex‐specific toxicity, they also associate redox‐inactive metals with the downregulation of antioxidant activity and oxidative stress. Furthermore, the higher condition index of females corroborates the possibility of sex‐specific toxicity, while the larger‐sized females compared to males suggests size‐sexual dimorphism in the blue crab populations. The site‐specific oxidative damage between sexes may be attributed to the different complexity of both habitats, which affords different ecological opportunities for the sexes.  相似文献   

4.
During the last three decades, population abundances of eastern Bering Sea (EBS) crab stocks fluctuated greatly, driven by highly variable recruitment. In recent years, abundances of these stocks have been very low compared to historical levels. This study aims to understand recruitment variation of six stocks of red king (Paralithodes camtschaticus), blue king (P. platypus), Tanner (Chionoecetes bairdi), and snow (C. opilio) crabs in the EBS. Most crab recruitment time series are not significantly correlated with each other. Spatial distributions of three broadly distributed crab stocks (EBS snow and Tanner crabs and Bristol Bay red king crab) have changed considerably over time, possibly related in part to the regime shift in climate and physical oceanography in 1976–1977. Three climate-forcing hypotheses on larval survival have been proposed to explain crab recruitment variation of Bristol Bay red king crab and EBS Tanner and snow crabs. Some empirical evidence supports speculation that groundfish predation may play an important role in crab recruitment success in the EBS. However, spatial dynamics in the geographic distributions of groundfish and crabs over time make it difficult to relate crab recruitment strength to groundfish biomass. Comprehensive field and spatially explicit modeling studies are needed to test the hypotheses and better understand the relative importance and compound effects of bottom-up and top-down controls on crab recruitment.  相似文献   

5.
Species diversity is generally considered one of the key factors of ecosystem resilience in response to anthropogenic pressures, including fishing. In this context, the spatial and temporal changes in demersal fish assemblages and species diversity were investigated in the northern Gulf of St. Lawrence (Canada), over a 20‐year period (1990–2010). Data were obtained from the summer research survey conducted by the Department of Fisheries and Oceans, and include commercial and non‐commercial species. The study covers the period of groundfish fishery collapse, the moratorium period, and the post‐moratorium period, and reflects various modifications in management. Multivariate statistical methods revealed two communities. A coastal community corresponds to strata located above 200 m depth and a deeper community located in the deep channels. Interannual differences in the composition of fish assemblages were observed and are mainly due to the changes in the relative biomass of some dominant species. Three diversity indices (Shannon–Wiener, Simpson's Index of Diversity and Motomura's constant) indicate a slight but significant increase of the diversity over time. This trend is due to the increase of the relative biomass of low‐rank species, which may have been favoured by the prohibition of groundfish trawling after 1997 in that region. The geographical distribution of the Shannon–Wiener index also shows temporal dynamics reflecting the biomass distribution of dominant demersal species.  相似文献   

6.
Many studies on invasive species show reduced native densities, but few studies measure trait‐mediated effects as mechanisms for changes in native growth rates and population dynamics. Where native prey face invasive predators, mechanisms for phenotypic change include selective predation, or induced behavioral or morphological plasticity. Invasive green crabs, Carcinus maenas, have contributed to declines in native soft‐shell clams, Mya arenaria, in coastal New England, USA. We tested the hypothesis that clam ability to detect chemical cues from predators or damaged conspecifics would induce greater burrowing depth as a refuge from invasive crabs, and greater burrowing would require increased siphon growth. To determine how crab predation affected clam survivorship and phenotypic traits in the field, clams in exclosure, open, and crab enclosure plots were compared. Crab predation reduced clam density, and surviving clams were deeper and larger, with longer siphons. To determine whether the mechanism for these results was selective predation or induced plasticity, phenotypes were compared between clams exposed to chemical cues from crab predation and clams exposed to seawater in laboratory and field experiments. In response to crab predation cues, clams burrowed deeper, with longer siphons and greater siphon mass. Overall, crab predation removed clams with shorter siphons at shallow depths, and crab predation cues induced greater burrowing depths and longer siphons. Longer siphons and greater siphon mass of deeper clams suggests clams may allocate energy to siphon growth in response to crabs. By determining native behavior and morphological changes in response to an invasive predator, this study adds to our understanding of mechanisms for invasive impacts and illustrates the utility of measuring trait‐mediated effects to investigate predator–prey dynamics.  相似文献   

7.
本研究依据2006—2007年与2016—2017年各个季节在厦门海域采样获得的蟹类样品数据,对比分析了其种类组成、资源密度及其多样性指数。结果表明:厦门海域蟹类的种类组成有较大变化,种类更替率为55.32%,伴随着在两次调查中扇蟹科、方蟹科和关公蟹科等物种的新出现及梭子蟹科和长脚蟹科物种的消失,同时蟹类丰度(d)有所减少;均匀度(J)、种类多样性指数(H′)和资源密度变化较小;蟹类的群落结构变得更单一,容易遭到破坏;研究期间拟穴青蟹(Scylla paramamosain)资源出现一定程度的恢复,蟹类资源的平均个体质量有所增加,其中秋季蟹类个数密度增长较为明显。本研究建议在保证严格禁渔等管理的同时,加强对其海洋栖息地的管理和恢复。  相似文献   

8.
The relationship between diet and feeding activity of intertidal crabs, and environmental cycles (tidal, daily and seasonal), habitat and level of the intertidal zone (high/low) was studied using Neohelice granulata (Brachyura, Varunidae) as a model. This is a semi‐terrestrial burrowing crab occupying different habitats in the Southwestern Atlantic coasts and estuaries from bare low intertidal mudflats to high intertidal salt marshes, and from fine, organic matter rich sediment to very coarse sediment with low content of organic matter. The study was carried out in two contrasting habitats of three sites with diverse sets of physical and biological conditions. Diet and feeding of adult N. granulata were indirectly studied through the proportion of food items and the presence/absence of food in crab stomachs, respectively. This species has a dual mode of feeding: predominantly herbivorous (live plants or plant litter in salt marshes) or deposit feeder (superficial sediment and detritus in mudflats), but the quantity and quality of ingested food varies among habitats and sites. A trend to omnivory (including algae and conspecifics) was detected in relation to low quality of resources. Feeding activity modulated by a complex interaction of factors varied according to spatial and/or temporal changes in some natural cycles. Males and non‐ovigerous females fed preferably after dark and during submersion periods, but also after emersion periods if mudflat sediment remained wet; salt marsh crab feeding is somewhat independent of light and tidal cycles. Ovigerous females almost never fed. Both diet and feeding activity of this crab seem to be flexible traits adapted to different combinations of physical and biological factors.  相似文献   

9.
There are gaps in what is known about the patterns of gastropod shell use by hermit crabs in Brazilian lagoon areas, especially in Northeastern Brazil. However, this is important because the understanding of selection patterns provides information on life history and eco‐evolutionary conceptions of paguroids. The present study investigated the use of gastropod shells occupied by Pagurus criniticornis and Clibanarius sclopetarius in a coastal lagoon seasonally connected to an estuary and to the sea, correlating eco‐evolutionary aspects and hydrodynamic characters. The study was carried out between February 2013 and January 2014. Hermit crabs and their shells were identified and measured (hermit crabs’ cephalothorax shield length and width, major propodus length and height, weight, shell total length and width, shell aperture length and width). Partial least squares regression was used to analyse the morphometric data. Additionally, a multinomial proportions test was performed to infer patterns (inter‐/intra‐specific) of shells’ occupation. Hermit crab species occupied a total of 13 types of shells, predominantly those of Neritina virginea (67.83%). The shell weight was the most important determinant of shell occupancy in the morphometric model (variable importance in projection >1). The proportions of N. virginea shells used were similar in both species of hermit crabs, except between the sexes of P. criniticornis. Presumably, the high utilization rate of N. virginea shells is related to its abundance and dispersal, and to the shells’ suitability for hermit crabs, which is reflected by the morphometric model, as well as by the hydrodynamics of the lagoon‐estuarine environment. The relative occupation of different types of shells for each species of hermit crabs studied appears to be associated with regulation by inter‐/intra‐specific competition, which fosters the co‐occurrence of those populations. These results endorse coastal lagoons as a refuge and recruitment area for aquatic fauna. In addition, it highlights a challenge in the management and conservation of paguroid species whose population dynamics depend on the resources coming from the Gastropoda community.  相似文献   

10.
11.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   

12.
Although grazing is considered an essential process controlling epiphyte biomass on seagrass leaves, there is still a lack of fundamental knowledge about the species‐specific consumption rates of the most common grazers in Mediterranean meadows. This study experimentally assessed the effect of Posidonia oceanica‐associated gastropod grazing on early successional biofilm and the species‐specific relationship between biofilm consumption rates and biofilm biomass. Two biofilms on artificial substrata, both developed in situ (in a P. oceanica meadow), one under ambient conditions and the other under nutrient‐enriched conditions, were offered in aquaria assays to nine species of grazers found in P. oceanica meadows. Biofilm consumption rates and their association with biofilm biomass were assessed. It was found that: (i) there was a positive association between biofilm consumption and biofilm biomass up to 20 mg Chl a·m?2 for Bittium reticulatum, Gibbula ardens, Jujubinus exasperatus and Tricolia pullus; (ii) Alvania montagui, B. reticulatum and Jujubinus striatus showed the highest consumption rates and are thus expected to be amongst the leading consumers in early‐successional epiphytic communities; (iii) there was not an increase of consumption rate when a substratum colonized under nutrient‐enriched conditions was offered to any of the nine studied species. This study provides species‐specific consumption rates knowledge that is useful for the assessment of the strength of grazer–epiphyte interactions and trophic fluxes in P. oceanica meadows.  相似文献   

13.
Although there is extensive information concerning the colonization sequences of benthic communities, little is known about the successional development of subtidal hard‐bottom habitats in highly productive coastal upwelling areas. In these systems, succession is predicted to be fast due to high growth rate of the later dominant colonizers. Using artificial hard substrata a field experiment was conducted in a rocky subtidal area off Northern Chile (Humboldt Current System) and monitored at 3‐month intervals to test the following hypotheses: (i) epibenthic succession may proceed through consecutive replacement of species, (ii) there is a fast convergence rate towards natural communities, and (iii) different seasonal starting points for the colonization will produce different community structure over a 1‐year period of exposure. Panels were installed on a vertical wall at 17 m water depth. Three replicate panels were sampled every 3 months over a period of 27 months. As a reference, six haphazardly selected plots from the surrounding natural community were surveyed at each sampling date. To evaluate how seasonally varying substratum availability affects community development, further panels were exposed for a 12‐month period, starting in four different seasons (n = 3 replicates per season). Community succession was slow and occurred through progressive changes, between early encrusting red corallines, middle Balanus flosculus and late Lagenicella variabilis. After 27 months, the community composition, but not its structure, was similar between experimental and reference communities on surrounding rocky bottoms. Seasonality had no effects and after 1 year of exposure the experimental communities converged towards a common structure. This study indicates that succession of subtidal epibenthic communities follows a slow and predictable pattern with a dominant late colonial species. In addition, aseasonal variability might be more relevant during colonization and succession in this upwelling ecosystem.  相似文献   

14.
Collection of marine invertebrates for use as fishing bait is a substantial activity in many parts of the world, often with unknown ecological consequences. As new fisheries develop, it is critical for environmental managers to have high quality ecological information regarding the potential impacts, in order to develop sound management strategies. Crab-tiling is a largely unregulated and un-researched fishery, which operates commercially in the south-west UK. The target species is the green crab Carcinus maenas. Those crabs which are pre-ecdysis and have a carapace width greater than 40 mm are collected to be sold to recreational anglers as bait. Collection involves laying artificial structures on intertidal sandflats and mudflats in estuaries. Crabs use these structures as refugia and are collected during low tide. However, the effect that this fishery has on populations of C. maenas is not known. The impact of crab-tiling on C. maenas population structure was determined by sampling crabs from tiled estuaries and non-tiled estuaries using baited drop-nets. A spatially and temporarily replicated, balanced design was used to compare crab abundance, sizes and sex ratios between estuaries. Typically, fisheries are associated with a reduction in the abundance of the target species. Crab-tiling, however, significantly increased C. maenas abundance. This was thought to be a result of the extra habitat in tiled estuaries, which probably provides protection from natural predators, such as birds and fish. Although crabs were more abundant in tiled estuaries than non-tiled estuaries, the overall percentage of reproductively active crabs in non-tiled estuaries was greater than in tiled estuaries. As with most exploited fisheries stocks, crabs in exploited (tiled) estuaries tended to be smaller, with a modal carapace width of 20–29 mm rather than 30–39 mm in non-tiled estuaries. The sex ratio of crabs however; was not significantly different between tiled and non-tiled estuaries. These results illustrate the potential to manage fished populations using habitat provision to mitigate the effects of fishing pressure.  相似文献   

15.
The abundance and distribution of mud crabs were studied in a replanted mangrove forest in Buswang, Aklan, Philippines. Two fishing gears, lift nets and bamboo traps, were used to monitor relative abundance of Scylla spp. populations from March 2002 to December 2003 inside the mangrove forest. A third gear, a stakenet set across a creek, was used to monitor crabs migrating out of the mangroves during the ebb tide. Scylla olivacea formed 99.3% and 70.3% of the catch in the mangrove and the stakenet, respectively. The percentage of Scylla tranquebarica increased from <1% in the mangrove catches to 29% in the stakenet. Scylla serrata was present at very low levels in both catches. The lack of modal progression in the size–frequency plots and the year-round catch rate of gravid females suggested that recruitment was constant throughout the year. Even though relative abundance decreased over the study period indicating that the stock is being over-exploited, mud crab production is more than equivalent to that of most natural mangroves.  相似文献   

16.
The colonisation of the terrestrial environment by crustaceans is more apparent in tropical latitudes because of the high diversity of semi‐terrestrial and terrestrial crabs. However, in temperate regions there are also great numbers of crustaceans that inhabit ecological niches at the water–air interface. Grapsidae crabs (Decopoda) are especially important in studies of water‐to‐land transition as the family contains species occupying the intertidal and adjacent regions. A way to evaluate the ability of intertidal invertebrates to breathe air is to measure the aerial/aquatic oxygen consumption ratio. The objective of this study was to test the effect of thermal variation on the aquatic and aerial metabolism. We selected as study model the decopoda crab Cyclograpsus cinereus Dana and utilised five populations of the species spread over 2000 km along the Chilean coast. To determine the compensation capacity in respiration with respect to latitude, we evaluated metabolic rate at the same temperature in a common garden design in the laboratory, to examine the extent to which variation in crab physiology is environmentally determined. Whereas in our study, mb (body mass) varied significantly with latitude, the difference in mass‐independent metabolism both in air and water persisted, indicating that observed differences in MR (Metabolic Rate) were not an effect of differences in body size. We demonstrated that C. cinereus is able to breath oxygen from air and water as expected for an amphibious crab. Almost all the studied populations of C. cinereus show a aerial/aquatic metabolism ratio near 1. The pattern found indicates an increase in metabolic rate, both aerial and aquatic, in low latitudes and therefore does not support the latitudinal compensation hypothesis for temperate habitats. Finally, these kinds of studies are required to make the necessary link between ecological physiology and macroecology and to help develop a global understanding of organismal function in marine systems.  相似文献   

17.
Fulton's K condition factor was applied, for the first time, to inter‐tidal specimens of the shanny (Lipophrys pholis) and long‐spined scorpion fish (Taurulus bubalis) from two English rocky shore and two Welsh rocky shore sites during summer 2010 and winter 2011. As both species contribute to the diet of commercial species such as cod (Gadus morhua) and near‐threatened species such as the European otter (Lutra lutra), their condition may affect that of these predators. Fulton's K found that inter‐tidal Welsh fish maintained a ‘good’ condition between seasons, whereas the inter‐tidal English fish were in a poorer condition during winter. Although condition also changed amongst the sites on each coast, further studies are needed into fish morphologies, environmental parameters, prey availabilities and abundances, and fish specimen sex and maturities.  相似文献   

18.
The rocky inter‐tidal habitat is a harsh and fluctuating environment, subject to frequent disturbances. Field observations of juvenile white seabream Diplodus sargus in inter‐tidal rocky habitats were conducted to analyse the spatial distribution and feeding activity of this species in relation to the tidal cycle. The depth at which fish were observed did not change in most tidal phases while feeding activity changed with tidal level, showing the occurrence of tidal migrations and that feeding may be limited by habitat availability in shallow waters and thus be dependent on tidal changes. The present results show the exploitation of available feeding areas in the rocky inter‐tidal by juvenile white seabream, which corroborates the importance of these habitats for the first developmental stages of this fish species.  相似文献   

19.
Variability of fish assemblages across habitat structures can depend on spatial scales. A hierarchical sampling design was used to assess the spatial variability of temperate fish assemblages in different habitats and at multiple scales. Underwater visual censuses were carried out along the coasts of Elba Island (NW Mediterranean) on Posidonia oceanica beds, rocky algal reefs and sandy habitat at three spatial scales, namely tens of metres (individual replicates), hundreds of metres (sites) and tens of kilometres (locations). At the assemblage level, there was a clear relationship between fish and habitat type and the observed habitat‐related differences were largely dependent on species identity. Fish assemblages on P. oceanica beds and rocky reefs shared a high number of species, whereas overlap with sandy assemblages was negligible. Multivariate analyses revealed significant differences in fish assemblages among habitats, although there was also a significant habitat × site interaction. These differences relied mainly upon assemblage composition and species richness. Assemblages on rocky reefs and P. oceanica meadows usually harboured a higher number of species and individuals compared with sandy assemblages. Nevertheless, the patterns of habitat‐related differences in species richness and, especially, in the total number of fish, changed significantly from site to site. Eight species showed significant differences over habitats, but they were not consistent due to the interaction of habitat with site. Predictability of fish at both assemblage and population levels decreased with the scale of observation, and the spatial pattern of fish observed at the smallest scale was likely dependent on factors other than habitat type.  相似文献   

20.
The rocky intertidal zone around the city of Mar del Plata (SW Atlantic, 38° S–57° W) is characterized by dense mussel beds of Brachidontes rodriguezii. This intertidal community develops on natural and artificial hard substrates, including abrasion platforms in sewage‐impacted areas. A monitoring program, designed to assess the effect of sewage discharge on intertidal macrobenthic communities, has been conducted since 1997. During the spring season of 2008, a new spionid polychaete (Boccardia proboscidea) was found near the sewage outfall, forming large biogenic reefs. This is the first report of biogenic reefs being built by a non reef‐forming spionid polychaete in areas organically impacted by sewage discharges. The aim of this work was to evaluate the spatial–temporal dynamics (% cover and density of B. proboscidea) of these reefs. These biogenic reefs covered almost the entire impacted site, reaching a density of 650,000 ind·m?2. This phenomenon is unique in that there is no other record available worldwide of any other biogenic polychaete reefs that could be sewage‐induced. The presence and stability of these biogenic reefs is discussed in relation to increased organic contamination as a structuring factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号